49,440 research outputs found

    Long term outcome after tibial shaft fracture: is malunion important?

    Get PDF

    Physical Activity and Mental Well-being in a Cohort Aged 60–64 Years

    Get PDF
    Introduction: Although evidence suggests physical activity (PA) may be associated with mental well-being at older ages, it is unclear whether some types of PA are more important than others. The purpose of this study is to investigate associations of monitored total PA under free-living conditions, self-reported leisure-time PA (LTPA), and walking for pleasure with mental well-being at age 60–64 years. Methods: Data on 930 (47%) men and 1,046 (53%) women from the United Kingdom MRC National Survey of Health and Development collected in 2006–2011 at age 60–64 were used in 2013–2014 to test the associations of PA (PA energy expenditure and time spent in different intensities of activity assessed using combined heart rate and acceleration monitors worn for 5 days, self-reported LTPA, and walking for pleasure) with the Warwick-Edinburgh Mental Well-being Scale (WEMWBS; range, 14–70). Results: In linear regression models adjusted for gender, long-term limiting illness, smoking, employment, socioeconomic position, personality, and prior PA, those who walked for >1 hour/week had mean WEMWBS scores 1.47 (95% CI=0.60, 2.34) points higher than those who reported no walking. Those who participated in LTPA at least five times/month had WEMWBS scores 1.25 (95% CI=0.34, 2.16) points higher than those who did not engage in LTPA. There were no statistically significant associations between free-living PA and WEMWBS scores. Conclusions: In adults aged 60–64 years, participation in self-selected activities such as LTPA and walking are positively related to mental well-being, whereas total levels of free-living PA are not

    Cerebral small vessel disease, medial temporal lobe atrophy and cognitive status in patients with ischaemic stroke and transient ischaemic attack

    Get PDF
    BACKGROUND AND PURPOSE: Small vessel disease (SVD) and Alzheimer's disease (AD) are two common causes of cognitive impairment and dementia, traditionally considered as distinct processes. The relationship between radiological features suggestive of AD and SVD was explored, and the association of each of these features with cognitive status at 1 year was investigated in patients with stroke or transient ischaemic attack. METHODS: Anonymized data were accessed from the Virtual International Stroke Trials Archive (VISTA). Medial temporal lobe atrophy (MTA; a marker of AD) and markers of SVD were rated using validated ordinal visual scales. Cognitive status was evaluated with the Mini Mental State Examination (MMSE) 1 year after the index stroke. Logistic regression models were used to investigate independent associations between (i) baseline SVD features and MTA and (ii) all baseline neuroimaging features and cognitive status 1 year post-stroke. RESULTS: In all, 234 patients were included, mean (±SD) age 65.7 ± 13.1 years, 145 (62%) male. Moderate to severe MTA was present in 104 (44%) patients. SVD features were independently associated with MTA (P < 0.001). After adjusting for age, sex, disability after stroke, hypertension and diabetes mellitus, MTA was the only radiological feature independently associated with cognitive impairment, defined using thresholds of MMSE ≤ 26 (odds ratio 1.94; 95% confidence interval 1.28-2.94) and MMSE ≤ 23 (odds ratio 2.31; 95% confidence interval 1.48-3.62). CONCLUSION: In patients with ischaemic cerebrovascular disease, SVD features are associated with MTA, which is a common finding in stroke survivors. SVD and AD type neurodegeneration coexist, but the AD marker MTA, rather than SVD markers, is associated with post-stroke cognitive impairment

    Report of Acoustic Test on PSLV IS.1/2L Structure

    Get PDF
    The results of acoustic conducted on PSLV IS.1/2L at Acoustic Test Facility are briefly given. It contains test set up, Instrumentation details and tables of spectral response

    Causality re-established

    Get PDF
    Causality never gained the status of a "law" or "principle" in physics. Some recent literature even popularized the false idea that causality is a notion that should be banned from theory. Such misconception relies on an alleged universality of reversibility of laws of physics, based either on determinism of classical theory, or on the multiverse interpretation of quantum theory, in both cases motivated by mere interpretational requirements for realism of the theory. Here, I will show that a properly defined unambiguous notion of causality is a theorem of quantum theory, which is also a falsifiable proposition of the theory. Such causality notion appeared in the literature within the framework of operational probabilistic theories. It is a genuinely theoretical notion, corresponding to establish a definite partial order among events, in the same way as we do by using the future causal cone on Minkowski space. The causality notion is logically completely independent of the misidentified concept of "determinism", and, being a consequence of quantum theory, is ubiquitous in physics. In addition, as classical theory can be regarded as a restriction of quantum theory, causality holds also in the classical case, although the determinism of the theory trivializes it. I then conclude arguing that causality naturally establishes an arrow of time. This implies that the scenario of the "Block Universe" and the connected "Past Hypothesis" are incompatible with causality, and thus with quantum theory: they both are doomed to remain mere interpretations and, as such, not falsifiable, similar to the hypothesis of "super-determinism". This article is part of a discussion meeting issue "Foundations of quantum mechanics and their impact on contemporary society".Comment: Presented at the Royal Society of London, on 11/12/ 2017, at the conference "Foundations of quantum mechanics and their impact on contemporary society". To appear on Philosophical Transactions of the Royal Society

    The structural and functional integrity of peripheral nerves depends on the glial-derived signal desert hedgehog

    Get PDF
    We show that desert hedgehog ( dhh), a signaling molecule expressed by Schwann cells, is essential for the structural and functional integrity of the peripheral nerve. Dhh-null nerves display multiple abnormalities that affect myelinating and nonmyelinating Schwann cells, axons, and vasculature and immune cells. Myelinated fibers of these mice have a significantly increased ( more than two times) number of Schmidt-Lanterman incisures ( SLIs), and connexin 29, a molecular component of SLIs, is strongly upregulated. Crossing dhh-null mice with myelin basic protein ( MBP)-deficient shiverer mice, which also have increased SLI numbers, results in further increased SLIs, suggesting that Dhh and MBP control SLIs by different mechanisms. Unmyelinated fibers are also affected, containing many fewer axons per Schwann cell in transverse profiles, whereas the total number of unmyelinated axons is reduced by approximately one-third. In dhh-null mice, the blood-nerve barrier is permeable and neutrophils and macrophage numbers are elevated, even in uninjured nerves. Dhh-null nerves also lack the largest-diameter myelinated fibers, have elevated numbers of degenerating myelinated axons, and contain regenerating fibers. Transected dhh nerves degenerate faster than wild-type controls. This demonstrates that a single identified glial signal, Dhh, plays a critical role in controlling the integrity of peripheral nervous tissue, in line with its critical role in nerve sheath development ( Parmantier et al., 1999). The complexity of the defects raises a number of important questions about the Dhh-dependent cell-cell signaling network in peripheral nerves
    corecore