438 research outputs found
Advances in studying phasic dopamine signaling in brain reward mechanisms
The last sixty years of research has provided extraordinary advances of our knowledge of the reward system. Since its discovery as a neurotransmitter by Carlsson and colleagues (1), dopamine (DA) has emerged as an important mediator of reward processing. As a result, a number of electrochemical techniques have been developed to measure DA in the brain. Together, these techniques have begun to elucidate the complex roles of tonic and phasic DA signaling in reward processing and addiction. In this review, we will first provide a guide for the most commonly used electrochemical methods for DA detection and describe their utility in furthering our knowledge about DA's role in reward and addiction. Second, we will review the value of common in vitro and in vivo preparations and describe their ability to address different types of questions. Last, we will review recent data that has provided new mechanistic insight of in vivo phasic DA signaling and its role in reward processing and reward-mediated behavior
High-Temperature Stable Operation of Nanoribbon Field-Effect Transistors
We experimentally demonstrated that nanoribbon field-effect transistors can be used for stable high-temperature applications. The on-current level of the nanoribbon FETs decreases at elevated temperatures due to the degradation of the electron mobility. We propose two methods of compensating for the variation of the current level with the temperature in the range of 25–150°C, involving the application of a suitable (1) positive or (2) negative substrate bias. These two methods were compared by two-dimensional numerical simulations. Although both approaches show constant on-state current saturation characteristics over the proposed temperature range, the latter shows an improvement in the off-state control of up to five orders of magnitude (−5.2 × 10−6)
Induction of lymphokine-activated killer activity in rat splenocyte cultures: The importance of 2-mercaptoethanol and indomethacin
The role of 2-mercaptoethanol and indomethacin in the induction of lymphokine-activated killer (LAK) activity by interleukin-2 (IL-2) in rat splenocyte cultures was investigated. Spleens from 4-month-old male rats of five different strains were tested. Splenocytes were cultured for 3-5 days in the presence of IL-2 (1000 U/ml) and LAK activity was assessed by 4-h51Cr release assays with P815 and YAC-1 cells as targets. LAK activity could be induced by IL-2 in splenocytes from all rat strains, but only when 2-mercaptoethanol was present in the culture medium. Optimal LAK activity was induced when the 2-mercaptoethanol concentration in splenocyte cultures was at least 5 μM. Different rat strains showed differences in levels of in vitro induction of LAK activity. In the presence of 2-mercaptoethanol the level of LAK activity induced by IL-2 was high in BN and Lewis rats, intermediate in Wistar and Wag rats, and low in DZB rats. In the absence of 2-mercaptoethanol no or minimal LAK activity was induced. Furthermore we observed that addition of 50 μm indomethacin to the culture medium in the presence of 2-mercaptoethanol augmented the induction of LAK activity to some extent. In the absence of 2-mercaptoethanol, addition of indomethacin resulted only in low levels or no induction of LAK activity. We conclude that for optimal induction of LAK activity by IL-2 in rat splenocyte cultures 2-mercaptoethanol is essential, while indomethacin can only marginally further improve this induction
In vitro and in vivo reversal of resistance to 5-fluorouracil in colorectal cancer cells with a novel stealth double-liposomal formulation
Drug resistance is a major cause of treatment failure in cancer chemotherapy, including that with the extensively prescribed antimetabolite, 5-fluorouracil (5-FU). In this study, we tried to reverse 5-FU resistance by using a double-punch strategy: combining 5-FU with a biochemical modulator to improve its tumoural activation and encapsulating both these agents in one same stealth liposome. Experiments carried out in the highly resistant, canonical SW620 human colorectal model showed a up to 80% sensitisation to 5-FU when these cells were treated with our liposomal formulation. Results with this formulation demonstrated 30% higher tumoural drug uptake, better activation with increased active metabolites including critical-5-fluoro-2-deoxyuridine-5-monophosphate, superior inhibition (98%) of tumour thymidylate synthase, and subsequently, higher induction of both early and late apoptosis. Drug monitoring showed that higher and sustained exposure was achieved in rats treated with liposomal formulation. When examined in a xenograft animal model, our dual-agent liposomal formulation caused a 74% reduction in tumour size with a mean doubling in survival time, whereas standard 5-FU failed to exhibit significant antiproliferative activity as well as to increase the lifespan of tumour-bearing mice. Taken collectively, our data suggest that resistance to 5-FU can be overcome through a better control of its intratumoural activation and the use of an encapsulated formulation
Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).
Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≥1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≤6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)
- …