1,085 research outputs found
Dynamo action in thick disks around Kerr black holes: high-order resistive GRMHD simulations
We present the first kinematic study of an -dynamo in the
General Relativistic Magneto-HydroDynamics (GRMHD) regime, applied to thick
disks orbiting around Kerr black holes and using a fully covariant mean field
dynamo closure for the Ohm law. We show that the -dynamo
mechanism leads to a continuous exponential growth of the magnetic field within
the disk and to the formation of dynamo waves drifting away or toward the
equatorial plane. Since the evolution of the magnetic field occurs
qualitatively in the same fashion as in the Sun, we present also butterfly
diagrams that characterize our models and show the establishment of an
additional timescale, which depends on the microscopic properties of the
turbulent motions, possibly providing an alternative explanation to
periodicities observed in many high-energy astrophysical sources where
accretion onto a rotating black hole is believed to operate.Comment: 5 pages, 4 figures. Accepted for publication in MNRA
Fast reconnection in relativistic plasmas: the magnetohydrodynamics tearing instability revisited
Fast reconnection operating in magnetically dominated plasmas is often
invoked in models for magnetar giant flares, for magnetic dissipation in pulsar
winds, or to explain the gamma-ray flares observed in the Crab nebula, hence
its investigation is of paramount importance in high-energy astrophysics. Here
we study, by means of two dimensional numerical simulations, the linear phase
and the subsequent nonlinear evolution of the tearing instability within the
framework of relativistic resistive magnetohydrodynamics, as appropriate in
situations where the Alfven velocity approaches the speed of light. It is found
that the linear phase of the instability closely matches the analysis in
classical MHD, where the growth rate scales with the Lundquist number S as
S^-1/2, with the only exception of an enhanced inertial term due to the thermal
and magnetic energy contributions. In addition, when thin current sheets of
inverse aspect ratio scaling as S^-1/3 are considered, the so-called "ideal"
tearing regime is retrieved, with modes growing independently on S and
extremely fast, on only a few light crossing times of the sheet length. The
overall growth of fluctuations is seen to solely depend on the value of the
background Alfven velocity. In the fully nonlinear stage we observe an inverse
cascade towards the fundamental mode, with Petschek-type supersonic jets
propagating at the external Alfven speed from the X-point, and a fast
reconnection rate at the predicted value R~(ln S)^-1.Comment: 14 pages, 9 figures, accepted for publication (MNRAS
CHIANTI - an atomic database for emission lines. VII. New Data for X-rays and other improvements
The CHIANTI atomic database contains atomic energy levels, wavelengths, radiative transition probabilities, and collisional excitation data for a large number of ions of astrophysical interest. CHIANTI also includes a suite of IDL routines to calculate synthetic spectra and carry out plasma diagnostics. Version 5 has been released, which includes several new features, as well as new data for many ions. The new features in CHIANTI are as follows: the inclusion of ionization and recombination rates to individual excited levels as a means to populate atomic levels; data for Kα and Kβ emission from Fe ii to Fe xxiv; new data for high-energy configurations in Fe xvii to Fe xxiii; and a complete reassessment of level energies and line identifications in the X-ray range, multitemperature particle distributions, and photoexcitation from any user-defined radiation field. New data for ions already in the database, as well as data for ions not present in earlier versions of the database, are also included. Version 5 of CHIANTI represents a major improvement in the calculation of line emissivities and synthetic spectra in the X-ray range and expands and improves theoretical spectra calculations in all other wavelength ranges
Spherically symmetric relativistic MHD simulations of pulsar wind nebulae in supernova remnants
Pulsars, formed during supernova explosions, are known to be sources of
relativistic magnetized winds whose interaction with the expanding supernova
remnants (SNRs) gives rise to a pulsar wind nebula (PWN). We present
spherically symmetric relativistic magnetohydrodynamics (RMHD) simulations of
the interaction of a pulsar wind with the surrounding SNR, both in particle and
magnetically dominated regimes. As shown by previous simulations, the evolution
can be divided in three phases: free expansion, a transient phase characterized
by the compression and reverberation of the reverse shock, and a final Sedov
expansion. The evolution of the contact discontinuity between the PWN and the
SNR (and consequently of the SNR itself) is almost independent of the
magnetization of the nebula as long as the total (magnetic plus particle)
energy is the same. However, a different behaviour of the PWN internal
structure is observable during the compression-reverberation phase, depending
on the degree of magnetization=2E The simulations were performed using the
third order conservative scheme by Del Zanna et al. (2003).Comment: 11 pages, Latex, 22 Encapsulated PostScript figures, accepted f or
publication on A&
Oceanic stochastic parametrizations in a seasonal forecast system
We study the impact of three stochastic parametrizations in the ocean
component of a coupled model, on forecast reliability over seasonal timescales.
The relative impacts of these schemes upon the ocean mean state and ensemble
spread are analyzed. The oceanic variability induced by the atmospheric forcing
of the coupled system is, in most regions, the major source of ensemble spread.
The largest impact on spread and bias came from the Stochastically Perturbed
Parametrization Tendency (SPPT) scheme - which has proven particularly
effective in the atmosphere. The key regions affected are eddy-active regions,
namely the western boundary currents and the Southern Ocean. However, unlike
its impact in the atmosphere, SPPT in the ocean did not result in a significant
decrease in forecast error. Whilst there are good grounds for implementing
stochastic schemes in ocean models, our results suggest that they will have to
be more sophisticated. Some suggestions for next-generation stochastic schemes
are made.Comment: 24 pages, 3 figure
Oceanic stochastic parametrizations in a seasonal forecast system
We study the impact of three stochastic parametrizations in the ocean
component of a coupled model, on forecast reliability over seasonal timescales.
The relative impacts of these schemes upon the ocean mean state and ensemble
spread are analyzed. The oceanic variability induced by the atmospheric forcing
of the coupled system is, in most regions, the major source of ensemble spread.
The largest impact on spread and bias came from the Stochastically Perturbed
Parametrization Tendency (SPPT) scheme - which has proven particularly
effective in the atmosphere. The key regions affected are eddy-active regions,
namely the western boundary currents and the Southern Ocean. However, unlike
its impact in the atmosphere, SPPT in the ocean did not result in a significant
decrease in forecast error. Whilst there are good grounds for implementing
stochastic schemes in ocean models, our results suggest that they will have to
be more sophisticated. Some suggestions for next-generation stochastic schemes
are made.Comment: 24 pages, 3 figure
Transverse oscillations in solar coronal loops induced by propagating Alfvenic pulses
The propagation and the evolution of Alfvenic pulses in the solar coronal
arcades is investigated by means of MHD numerical simulations. Significant
transverse oscillations in coronal loops, triggered by nearby flare events, are
often measured in EUV lines and are generally interpreted as standing kink
modes. However, the damping times of these oscillations are typically very
short (from one to a few periods) and the physical mechanism responsible for
the decay is still a matter of debate. Moreover, the majority of the observed
cases actually appears to be better modeled by propagating, rather than
standing, modes. Here we perform 2.5-D compressible MHD simulations of
impulsively generated Alfven waves propagating in a potential magnetic arcade
(assumed as a simplified 2-D loop model), taking into account the
stratification of the solar atmosphere with height from the photosphere to the
corona. The results show a strong spreading of the initially localized pulses
along the loop, due to the variations in the Alfven velocity with height, and
correspondingly an efficient damping of the amplitude of the oscillations. We
believe that simple explanations based on the effects of wave propagation in
highly inhomogeneous media may apply to the majority of the reported cases, and
that variations of the background density and Alfven speed along the loop
should be considered as key ingredients in future models.Comment: Accepted for publication in A&A on 26 October 2004; 10 pages, 8
figure
Organization of the respiratory supercomplexes in cells with defective complex III: Structural features and metabolic consequences
The mitochondrial respiratory chain encompasses four oligomeric enzymatic complexes (complex I, II, III and IV) which, together with the redox carrier ubiquinone and cytochrome c, catalyze electron transport coupled to proton extrusion from the inner membrane. The protonmotive force is utilized by complex V for ATP synthesis in the process of oxidative phosphorylation. Respiratory complexes are known to coexist in the membrane as single functional entities and as supramolecular aggregates or supercomplexes (SCs). Understanding the assembly features of SCs has relevant biomedical implications because defects in a single protein can derange the overall SC organization and compromise the energetic function, causing severe mitochondrial disorders. Here we describe in detail the main types of SCs, all characterized by the presence of complex III. We show that the genetic alterations that hinder the assembly of Complex III, not just the activity, cause a rearrangement of the architecture of the SC that can help to preserve a minimal energetic function. Finally, the major metabolic disturbances associated with severe SCs perturbation due to defective complex III are discussed along with interventions that may circumvent these deficiencies
Coronal Diagnostics from Narrowband Images around 30.4 nm
Images taken in the band centered at 30.4 nm are routinely used to map the
radiance of the He II Ly alpha line on the solar disk. That line is one of the
strongest, if not the strongest, line in the EUV observed in the solar
spectrum, and one of the few lines in that wavelength range providing
information on the upper chromosphere or lower transition region. However, when
observing the off-limb corona the contribution from the nearby Si XI 30.3 nm
line can become significant. In this work we aim at estimating the relative
contribution of those two lines in the solar corona around the minimum of solar
activity. We combine measurements from CDS taken in August 2008 with
temperature and density profiles from semiempirical models of the corona to
compute the radiances of the two lines, and of other representative coronal
lines (e.g., Mg X 62.5 nm, Si XII 52.1 nm). Considering both diagnosed
quantities from line ratios (temperatures and densities) and line radiances in
absolute units, we obtain a good overall match between observations and models.
We find that the Si XI line dominates the He II line from just above the limb
up to ~2 R_Sun in streamers, while its contribution to narrowband imaging in
the 30.4 nm band is expected to become smaller, even negligible in the corona
beyond ~2 - 3 R_Sun, the precise value being strongly dependent on the coronal
temperature profile.Comment: 26 pages, 11 figures; to be published in: Solar Physic
- …