664 research outputs found

    Magnetic and Transport Properties of Fe-Ag granular multilayers

    Full text link
    Results of magnetization, magnetotransport and Mossbauer spectroscopy measurements of sequentially evaporated Fe-Ag granular composites are presented. The strong magnetic scattering of the conduction electrons is reflected in the sublinear temperature dependence of the resistance and in the large negative magnetoresistance. The simultaneous analysis of the magnetic properties and the transport behavior suggests a bimodal grain size distribution. A detailed quantitative description of the unusual features observed in the transport properties is given

    Absence of molecular mobility on nano-second time scales in amorphous ice phases

    Full text link
    High-resolution neutron backscattering techniques are exploited to study the elastic and quasi-elastic response of the high-density amorphous (HDA), the low-density amorphous (LDA) and the crystalline ice Ic upon temperature changes. Within the temperature ranges of their structural stability (HDA at T > 80 K, LDA at T > 135 K, ice Ic at T < 200 K) the Debye-Waller factors and mean-square displacements characterise all states as harmonic solids. During the transformations HDA->LDA (T ~ 100 K), LDA->Ic (T ~ 150K) and the supposed glass transition with Tg ~ 135 K no relaxation processes can be detected on a time scale t < 4 ns. It can be concluded from coherent scattering measurements (D_2O) that LDA starts to recrystallise into ice Ic at T ~ 135 K, i.e. at the supposed Tg. In the framework of the Debye model of harmonic solids HDA reveals the highest Debye temperature among the studied ice phases, which is in full agreement with the lowest Debye level in the generalised density of states derived from time-of-flight neutron scattering experiments. The elastic results at low T indicate the presence of an excess of modes in HDA, which do not obey the Bose statistics

    The Infrared Camera (IRC) for AKARI - Design and Imaging Performance

    Full text link
    The Infrared Camera (IRC) is one of two focal-plane instruments on the AKARI satellite. It is designed for wide-field deep imaging and low-resolution spectroscopy in the near- to mid-infrared (1.8--26.5um) in the pointed observation mode of AKARI. IRC is also operated in the survey mode to make an all-sky survey at 9 and 18um. It comprises three channels. The NIR channel (1.8--5.5um) employs a 512 x 412 InSb array, whereas both the MIR-S (4.6--13.4um) and MIR-L (12.6--26.5um) channels use 256 x 256 Si:As impurity band conduction arrays. Each of the three channels has a field-of-view of about 10' x 10' and are operated simultaneously. The NIR and MIR-S share the same field-of-view by virtue of a beam splitter. The MIR-L observes the sky about $25' away from the NIR/MIR-S field-of-view. IRC gives us deep insights into the formation and evolution of galaxies, the evolution of planetary disks, the process of star-formation, the properties of interstellar matter under various physical conditions, and the nature and evolution of solar system objects. The in-flight performance of IRC has been confirmed to be in agreement with the pre-flight expectation. This paper summarizes the design and the in-flight operation and imaging performance of IRC.Comment: Publications of the Astronomical Society of Japan, in pres

    Construction of the free energy landscape by the density functional theory

    Full text link
    On the basis of the density functional theory, we give a clear definition of the free energy landscape. To show the usefulness of the definition, we construct the free energy landscape for rearrangement of atoms in an FCC crystal of hard spheres. In this description, the cooperatively rearranging region (CRR) is clealy related to the hard spheres involved in the saddle between two adjacent basins. A new concept of the simultaneously rearranging region (SRR) emerges naturally as spheres defined by the difference between two adjacent basins. We show that the SRR and the CRR can be determined explicitly from the free energylandscape.Comment: 11 pages, 3 figures, submitted to J. Chem. Phy

    The relationship between fragility, configurational entropy and the potential energy landscape of glass forming liquids

    Full text link
    Glass is a microscopically disordered, solid form of matter that results when a fluid is cooled or compressed in such a fashion that it does not crystallise. Almost all types of materials are capable of glass formation -- polymers, metal alloys, and molten salts, to name a few. Given such diversity, organising principles which systematise data concerning glass formation are invaluable. One such principle is the classification of glass formers according to their fragility\cite{fragility}. Fragility measures the rapidity with which a liquid's properties such as viscosity change as the glassy state is approached. Although the relationship between features of the energy landscape of a glass former, its configurational entropy and fragility have been analysed previously (e. g.,\cite{speedyfr}), an understanding of the origins of fragility in these features is far from being well established. Results for a model liquid, whose fragility depends on its bulk density, are presented in this letter. Analysis of the relationship between fragility and quantitative measures of the energy landscape (the complicated dependence of energy on configuration) reveal that the fragility depends on changes in the vibrational properties of individual energy basins, in addition to the total number of such basins present, and their spread in energy. A thermodynamic expression for fragility is derived, which is in quantitative agreement with {\it kinetic} fragilities obtained from the liquid's diffusivity.Comment: 8 pages, 3 figure

    Analysis of 5G RAN Configuration to Support Advanced V2X Services

    Get PDF
    5G offers high flexibility at the radio, transport and core networks to support various services of critical verticals such as connected and automated driving. At the Radio Access Network (RAN), 5G defines a New Radio (NR). 5G NR utilizes different subcarrier spacing, slot durations, modulations and channel coding schemes. This flexibility offers the possibility to support automotive services with different and demanding requirements, such as Advanced Driver-Assistance System (ADAS), cooperative driving, and remote driving. Previous studies showed that 5G NR can be configured to achieve latencies below 2 ms. However, existing studies are generally restricted to scenarios with a limited number of users and unlimited bandwidth. Therefore, it is important to analyze whether 5G NR can effectively support these services as the network scales under limited spectrum allocations. This study advances the current state of the art to demonstrate that the capability of 5G NR RAN to support advanced V2X services depends on the RAN configuration (subcarrier spacing, slot duration and error protection) and network loadUMH work was supported in part by the Spanish Ministry of Science and Innovation (MCI), AEI and FEDER funds under Project TEC2017-88612-R,and the Ministry of Universities (IJC2018-036862-I), and the Generalitat Valencian

    On the Scalability of the 5G RAN to Support Advanced V2X Services

    Get PDF
    Cellular networks currently support non-safety-critical Vehicle to Everything (V2X) services with relaxed latency and reliability requirements. 5G introduces novel technologies at the radio, transport and core networks that are expected to significantly reduce the latency and increase the flexibility and reliability of cellular networks. This has raised expectations on the possibility for 5G to support advanced V2X applications, including connected and automated applications such as advanced ADAS services, cooperative driving and remote driving. At the radio access network (RAN), 5G introduces the New Radio (NR) interface that incorporates flexible numerologies and new slot formats, channel coding schemes, and radio resource management processes. Previous studies have reported latency values of 5G NR below 2 ms when considering scenarios with limited users in the cell and with unlimited bandwidth. Supporting advanced V2X services using 5G requires a scalable network capable to support a larger number of users without degrading the required service level in scenarios with potentially limited spectrum. This study advances the current state of the art with the evaluation of the scalability of the 5G NR RAN. As a case study, the paper evaluates the capacity of 5G RAN to support the latency and reliability requirements of the cooperative lane change use case as the network load varies. The results show that the capacity of the 5G RAN to support advanced V2X services depends on the system configuration, network load and service requirements. These results call for a careful design, configuration and planning of 5G networks to support V2X services.UMH work was supported in part by the Spanish Ministry of Science and Innovation (MCI), AEI and FEDER funds under Project TEC2017-88612-R, and the Ministry of Universities (IJC2018-036862-I)

    Harmonic Vibrational Excitations in Disordered Solids and the "Boson Peak"

    Full text link
    We consider a system of coupled classical harmonic oscillators with spatially fluctuating nearest-neighbor force constants on a simple cubic lattice. The model is solved both by numerically diagonalizing the Hamiltonian and by applying the single-bond coherent potential approximation. The results for the density of states g(ω)g(\omega) are in excellent agreement with each other. As the degree of disorder is increased the system becomes unstable due to the presence of negative force constants. If the system is near the borderline of stability a low-frequency peak appears in the reduced density of states g(ω)/ω2g(\omega)/\omega^2 as a precursor of the instability. We argue that this peak is the analogon of the "boson peak", observed in structural glasses. By means of the level distance statistics we show that the peak is not associated with localized states

    Entropy Crisis, Ideal Glass Transition and Polymer Melting: Exact Solution on a Husimi Cactus

    Full text link
    We introduce an extension of the lattice model of melting of semiflexible polymers originally proposed by Flory. Along with a bending penalty, present in the original model and involving three sites of the lattice, we introduce an interaction energy that corresponds to the presence of a pair of parallel bonds and a second interaction energy associated with the presence of a hairpin turn. Both these new terms represent four-site interactions. The model is solved exactly on a Husimi cactus, which approximates a square lattice. We study the phase diagram of the system as a function of the energies. For a proper choice of the interaction energies, the model exhibits a first-order melting transition between a liquid and a crystalline phase. The continuation of the liquid phase below this temperature gives rise to a supercooled liquid, which turns continuously into a new low-temperature phase, called metastable liquid. This liquid-liquid transition seems to have some features that are characteristic of the critical transition predicted by the mode-coupling theory.Comment: To be published in Physical Review E, 68 (2) (2003
    • …
    corecore