4 research outputs found

    Optical properties of GaAs/Alx_{x}Ga1x_{1-x}As/GaAs quantum dot with off-central impurity driven by electric field

    Full text link
    The effect of a constant electric field and donor impurity on the energies and oscillator strengths of electron intraband quantum transitions in double-well spherical quantum dot GaAs/Alx_{x}Ga1x_{1-x}As/GaAs is researched. The problem is solved in the framework of the effective mass approximation and rectangular potential wells and barriers model using the method of wave function expansion over a complete set of electron wave functions in nanostructure without electric field. It is shown that under the effect of electric field, the electron in the ground state tunnels from the inner potential well into the outer one. It also influences on the oscillator strengths of intraband quantum transition. The binding energy of an electron with ion impurity is obtained as a function of electric field intensity at a different location of impurity.Comment: 9 pages, 6 figure

    Investigation of Co Ions Diffusion in Gd₃Ga₅O₁₂ Single Crystals

    No full text
    Spatial changes of properties of Gd₃Ga₅O₁₂ (GGG) single crystals caused by diffusion of cobalt ions during high-temperature annealing (1200°C, 24 h) in Co₃O₄ powder are investigated. The registration of these changes was carried out by optical spectrophotometry, microscopy and micro-Raman scattering methods. Changes in structure of near-surface layers of the crystal were investigated by X-ray diffraction technique. It was shown that the additional absorption induced by annealing is related to intra-center optical transitions in Co²⁺ ions, which occupy tetrahedral positions in the garnet structure at the distances of 250-500 μm from the crystal surface. The dependence of induced absorption with depth has got a non-monotonous character with a maximum at 400 μm. A comparison of the results obtained by different methods allows to suppose that the thermal treatment of GGG in the presence of cobalt ions leads to formation of the structurally and chemically non-uniform layer with a width about 500 μm

    Investigation of Co Ions Diffusion in Gd 3

    No full text
    Spatial changes of properties of Gd₃Ga₅O₁₂ (GGG) single crystals caused by diffusion of cobalt ions during high-temperature annealing (1200°C, 24 h) in Co₃O₄ powder are investigated. The registration of these changes was carried out by optical spectrophotometry, microscopy and micro-Raman scattering methods. Changes in structure of near-surface layers of the crystal were investigated by X-ray diffraction technique. It was shown that the additional absorption induced by annealing is related to intra-center optical transitions in Co²⁺ ions, which occupy tetrahedral positions in the garnet structure at the distances of 250-500 μm from the crystal surface. The dependence of induced absorption with depth has got a non-monotonous character with a maximum at 400 μm. A comparison of the results obtained by different methods allows to suppose that the thermal treatment of GGG in the presence of cobalt ions leads to formation of the structurally and chemically non-uniform layer with a width about 500 μm
    corecore