329 research outputs found

    Oxidative Stress Responses to Simulated Spaceflight in Mineralized and Marrow Compartments of Bone and Associated Vasculature

    Get PDF
    Long-term spaceflight causes profound changes to the musculoskeletal system attributable to unloading and fluid shifts in microgravity. Future space explorations beyond the earths magnetosphere will expose astronauts to space radiation, which may cause additional skeletal deficits that are not yet fully understood. Our long-term goals are twofold: to define the mechanisms and risk of bone loss in the spaceflight environment and to facilitate the development of effective countermeasures if necessary. Our central hypothesis is that oxidative stress plays a key role in progressive bone loss and vascular dysfunction caused by spaceflight. In animals models, overproduction of free radicals is associated with increased bone resorption, lower bone formation, and decrements in bone mineral density and structure which can ultimately lead to skeletal fragility. Evidence in support of a possible causative role for oxidative stress in spaceflight-induced bone loss derive from knockout and transgenic mouse studies and the use of pharmacological interventions with known anti-oxidant properties. In our studies to simulate spaceflight, 16-wk old, male C56Bl/6J mice were assigned to one of four groups: hind limb unloading to simulate weightlessness (HU), normally loaded Controls (NL) (sham irradiated, no hind limb unloading), irradiated at NASA Space Radiation Laboratory IR with 1-2Gy of (600MeV/n) alone, or in combination with protons (0.5Gy Protons/0.5Gy 56Fe), (IR) or both hind limb unloaded and irradiated, HU+IR. Mice were exposed to radiation 3 days after initiating HU and tissues harvested were 1-14 days after initiating treatments for analyses. Results from our laboratories, which employ various biochemical, gene expression, functional, and transgenic animal model methods, implicate dynamic regulation of redox-related pathways by spaceflight-related environmental factors. As one example, we found that combined HU and radiation exposure caused oxidative damage in skeletal tissues (lipid peroxidation) of wildtype mice, whereas bone from transgenic mice that overexpress human catalase in mitochondria were protected. Interestingly, marrow cells grown under culture conditions that select for endothelial progenitor cells (EPC), showed that HU but not IR reduced EPC cell migration; in contrast HU and IR each inhibited growth of marrow-derived osteoblast progenitors. Taken together, these results indicate that unloading and ionizing elicit distinct effects on progenitor and mature cells of vascular and skeletal tissue, and that oxidative damage may contribute to skeletal and vascular deficits that may emerge during extended space travel

    Ionizing Radiation Stimulates Expression of Pro-Osteoclastogenic Genes in Marrow and Skeletal Tissue

    Get PDF
    Exposure to ionizing radiation can cause rapid mineral loss and increase bone-resorbing osteoclasts within metabolically-active, cancellous-bone tissue leading to structural deficits. To better understand mechanisms involved in rapid, radiation-induced bone loss, we determined the influence of total-body irradiation on expression of select cytokines known both to stimulate osteoclastogenesis and contribute to inflammatory bone disease. Adult (16wk), male C57BL/6J mice were exposed to either 2Gy gamma rays (137Cs, 0.8Gy/min) or heavy ions (56Fe, 600MeV, 0.50-1.1Gy/min); this dose corresponds to either a single fraction of radiotherapy (typical total dose is 10Gy) or accumulates over long-duration, interplanetary missions. Serum, marrow, and mineralized tissue were harvested 4hrs-7d later. Gamma irradiation caused a prompt (2.6-fold within 4hrs) and persistent (peaking at 4.1-fold within 1d) rise in the expression of the obligate osteoclastogenic cytokine, receptor activator of nuclear factor kappaB-ligand (Rankl) within marrow cells over controls. Similarly, Rankl expression peaked in marrow cells within 3d of iron exposure (9.2-fold). Changes in Rankl expression induced by gamma irradiation preceded and overlapped with a rise in expression of other pro-osteoclastic cytokines in marrow (e.g., monocyte chemotactic protein-1 increased 11.9-fold, tumor necrosis factor-alpha increased 1.7- fold over controls). Marrow expression of the RANKL decoy receptor, osteoprotegerin (Opg), also rose after irradiation (11.3-fold). The ratio Rankl/Opg in marrow was increased 1.8-fold, a net pro-resorption balance. As expected, radiation increased a serum marker of resorption (tartrate resistant acid phosphatase) and led to cancellous bone loss (16% decrease in bone volume/total volume) through reduced trabecular struts. We conclude that total-body irradiation (gamma or heavy-ion) caused temporal, concerted regulation of gene expression within marrow and mineralized tissue for select cytokines which are responsible for osteoclastogenesis and elevated resorption; this is likely to account for rapid and progressive 52 deterioration of cancellous microarchitecture following exposure to ionizing radiation

    Novel Radiomitigator for Radiation-Induced Bone Loss

    Get PDF
    Radiation-induced bone loss can occur with radiotherapy patients, accidental radiation exposure and during long-term spaceflight. Bone loss due to radiation is due to an early increase in oxidative stress, inflammation and bone resorption, resulting in an imbalance in bone remodeling. Furthermore, exposure to high-Linear Energy Transfer (LET) radiation will impair the bone forming progenitors and reduce bone formation. Radiation can be classified as high-LET or low-LET based on the amount of energy released. Dried Plum (DP) diet prevents bone loss in mice exposed to total body irradiation with both low-LET and high-LET radiation. DP prevents the early radiation-induced bone resorption, but furthermore, we show that DP protects the bone forming osteoblast progenitors from high-LET radiation. These results provide insight that DP re-balances the bone remodeling by preventing resorption and protecting the bone formation capacity. This data is important considering that most of the current osteoporosis treatments only block the bone resorption but do not protect bone formation. In addition, DP seems to act on both the oxidative stress and inflammation pathways. Finally, we have preliminary data showing the potential of DP to be radio-protective at a systemic effect and could possible protect other tissues at risk of total body-irradiation such as skin, brain and heart

    Analysis of High-order Social Interaction of Female Mice on the International Space Station

    Get PDF
    Social interactions are adaptive responses to environmental pressures that have evolved to facilitate the success of individual animals and their progeny. Quantifying social behavior in social animals is therefore one method of evaluating an animal's health, wellbeing and their adjustment to changes in their environment. The interaction between environment and animal can influence numerous other physiological and psychological responses that may enhance, deter or shift an animals social paradigm. For this study, we utilized flight video from the Rodent Research Hardware and Operations Validation mission (Rodent Research-1; RR1) on the International Space Station (ISS). Female mice spent 37 days in microgravity on the ISS and video was captured during the final 33 days. In a previous analysis of individual behavior, we also reported an observed spontaneous ambulatory behavior which we termed circling or 'race tracking,' and we anecdotally observed an increase in group organization around this behavior. In this analysis we further examined this behavior, and other social interactions, to determine if (1) animals joining in on this behavior were induced by other cohort members already participating in this circling behavior, (2) rates of joining varied by number already participating

    Observation of variations in cosmic ray single count rates during thunderstorms and implications for large-scale electric field changes

    Get PDF
    We present the first observation by the Telescope Array Surface Detector (TASD) of the effect of thunderstorms on the development of cosmic ray single count rate intensity over a 700 km2 area. Observations of variations in the secondary low-energy cosmic ray counting rate, using the TASD, allow us to study the electric field inside thunderstorms, on a large scale, as it progresses on top of the 700 km2 detector, without dealing with the limitation of narrow exposure in time and space using balloons and aircraft detectors. In this work, variations in the cosmic ray intensity (single count rate) using the TASD, were studied and found to be on average at the ~(0.5-1)% and up to 2% level. These observations were found to be both in excess and in deficit. They were also found to be correlated with lightning in addition to thunderstorms. These variations lasted for tens of minutes; their footprint on the ground ranged from 6 km to 24 km in diameter and moved in the same direction as the thunderstorm. With the use of simple electric field models inside the cloud and between cloud to ground, the observed variations in the cosmic ray single count rate were recreated using CORSIKA simulations. Depending on the electric field model used and the direction of the electric field in that model, the electric field magnitude that reproduces the observed low-energy cosmic ray single count rate variations was found to be approximately between 0.2 GV-0.4 GV. This in turn allows us to get a reasonable insight on the electric field and its effect on cosmic ray air showers inside thunderstorms

    Simulated Space Radiation and Weightlessness: Vascular-Bone Coupling Mechanisms to Preserve Skeletal Health

    Get PDF
    We examined experimentally the effects of radiation and/or simulated weightlessness by hindlimb unloading on bone and blood vessel function either after a short period or at a later time after transient exposures in adult male, C57Bl6J mice. In sum, recent findings from our studies show that in the short term, ionizing radiation and simulate weightlessness cause greater deficits in blood vessels when combined compared to either challenge alone. In the long term, heavy ion radiation, but not unloading, can lead to persistent, adverse consequences for bone and vessel function, possibly due to oxidative stress-related pathways

    Simulated Space Radiation and Weightlessness: Vascular-Bone Coupling Mechanisms to Preserve Skeletal Health

    Get PDF
    We examined experimentally the effects of radiation andor simulated weightlessness by hindlimb unloading on bone and blood vessel function either after a short period or at a later time after transient exposures in adult male, C57Bl6J mice. In sum, recent findings from our studies show that in the short term, ionizing radiation and simulate weightlessness cause greater deficits in blood vessels when combined compared to either challenge alone. In the long term, heavy ion radiation, but not unloading, can lead to persistent, adverse consequences for bone and vessel function, possibly due to oxidative stress-related pathways

    Dried plum diet protects from bone loss caused by ionizing radiation

    Get PDF
    Bone loss caused by ionizing radiation is a potential health concern for radiotherapy patients, radiation workers and astronauts. In animal studies, exposure to ionizing radiation increases oxidative damage in skeletal tissues, and results in an imbalance in bone remodeling initiated by increased bone-resorbing osteoclasts. Therefore, we evaluated various candidate interventions with antioxidant or anti-inflammatory activities (antioxidant cocktail, dihydrolipoic acid, ibuprofen, dried plum) both for their ability to blunt the expression of resorption-related genes in marrow cells after irradiation with either gamma rays (photons, 2 Gy) or simulated space radiation (protons and heavy ions, 1 Gy) and to prevent bone loss. Dried plum was most effective in reducing the expression of genes related to bone resorption (Nfe2l2, Rankl, Mcp1, Opg, TNF-α) and also preventing later cancellous bone decrements caused by irradiation with either photons or heavy ions. Thus, dietary supplementation with DP may prevent the skeletal effects of radiation exposures either in space or on Earth

    Deleterious Effects of Simulated Spaceflight on Bone and Microvasculature in Adult Mice

    Get PDF
    Long-term spaceflight leads to extensive changes in the musculoskeletal system attributable, in part, to unloading during microgravity exposure. Additionally, irradiation at doses similar to that of a solar flare or a round-trip sojourn to Mars may cause significant depletion of stem/progenitor cell pools throughout the body as well as inflammation associated with prompt skeletal-tissue degradation. Previously, we demonstrated that irradiation leads to rapid bone loss, which can be mitigated in the short term by injection of a potent antioxidant (-lipoic acid). Furthermore, simulated weightlessness in adult mice adversely affects skeletal responses to low linear energy transfer (LET) radiation (137Cs). Here, we hypothesized that simulated weightlessness exacerbates the adverse effects of simulated space radiation (including both protons and 56Fe ions) by adversely affecting skeletal structure and functions as well as associated vasculature. Furthermore, we hypothesized that an antioxidant cocktail, which has been shown to be protective in other tissues, mitigates space radiation induced bone loss

    A novel underuse model shows that inactivity but not ovariectomy determines the deteriorated material properties and geometry of cortical bone in the tibia of adult rats

    Get PDF
    Our goal in this study was to determine to what extent the physiologic consequences of ovariectomy (OVX) in bones are exacerbated by a lack of daily activity such as walking. We forced 14-week-old female rats to be inactive for 15 weeks with a unique experimental system that prevents standing and walking while allowing other movements. Tibiae, femora, and 4th lumbar vertebrae were analyzed by peripheral quantitative computed tomography (pQCT), microfocused X-ray computed tomography (micro-CT), histology, histomorphometry, Raman spectroscopy, and the three-point bending test. Contrary to our expectation, the exacerbation was very much limited to the cancellous bone parameters. Parameters of femur and tibia cortical bone were affected by the forced inactivity but not by OVX: (1) cross-sectional moment of inertia was significantly smaller in Sham-Inactive rat bones than that of their walking counterparts; (2) the number of sclerostin-positive osteocytes per unit cross-sectional area was larger in Sham-Inactive rat bones than in Sham-Walking rat bones; and (3) material properties such as ultimate stress of inactive rat tibia was lower than that of their walking counterparts. Of note, the additive effect of inactivity and OVX was seen only in a few parameters, such as the cancellous bone mineral density of the lumbar vertebrae and the structural parameters of cancellous bone in the lumbar vertebrae/tibiae. It is concluded that the lack of daily activity is detrimental to the strength and quality of cortical bone in the femur and tibia of rats, while lack of estrogen is not. Our inactive rat model, with the older rats, will aid the study of postmenopausal osteoporosis, the etiology of which may be both hormonal and mechanical
    corecore