14,173 research outputs found
Effect of the spin-orbit interaction and the electron phonon coupling on the electronic state in a silicon vacancy
The electronic state around a single vacancy in silicon crystal is
investigated by using the Green's function approach. The triply degenerate
charge states are found to be widely extended and account for extremely large
elastic softening at low temperature as observed in recent ultrasonic
experiments. When we include the LS coupling on each Si
atom, the 6-fold spin-orbital degeneracy for the state with the valence
+1 and spin 1/2 splits into doublet groundstates and
quartet excited states with a reduced excited energy of . We also consider the effect of couplings between electrons and
Jahn-Teller phonons in the dangling bonds within the second order perturbation
and find that the groundstate becomes quartet which is responsible
for the magnetic-field suppression of the softening in B-doped silicon.Comment: 4 pages, 2 figure
Breadboard RL10-2B low-thrust operating mode (second iteration) test report
Cryogenic rocket engines requiring a cooling process to thermally condition the engine to operating temperature can be made more efficient if cooling propellants can be burned. Tank head idle and pumped idle modes can be used to burn propellants employed for cooling, thereby providing useful thrust. Such idle modes required the use of a heat exchanger to vaporize oxygen prior to injection into the combustion chamber. During December 1988, Pratt and Whitney conducted a series of engine hot firing demonstrating the operation of two new, previously untested oxidizer heat exchanger designs. The program was a second iteration of previous low thrust testing conducted in 1984, during which a first-generation heat exchanger design was used. Although operation was demonstrated at tank head idle and pumped idle, the engine experienced instability when propellants could not be supplied to the heat exchanger at design conditions
Moving the Worksite Health Promotion Profession Forward: Is The Time Right For Requiring Standards? A Review of the Literature
Standards in any profession are adopted to assure that the individuals hired are adequately trained and the programs that they oversee are of the highest quality. Worksite health promotion should be no different than any other field. A review of the research conducted by experts in worksite health promotion is examined, along with an assessment of skills needed to ensure that wellness programs are effective and employees, their families and even their communities are educated on the ways to best prevent chronic diseases and occupational incidences through healthy and safe behaviors. From these reviews, this paper explores the processes used to plan effective worksite health promotion programs and suggest initial discussions whether these processes should become standards for the professionals in the worksite health promotion field
A stochastic theory for temporal fluctuations in self-organized critical systems
A stochastic theory for the toppling activity in sandpile models is
developed, based on a simple mean-field assumption about the toppling process.
The theory describes the process as an anti-persistent Gaussian walk, where the
diffusion coefficient is proportional to the activity. It is formulated as a
generalization of the It\^{o} stochastic differential equation with an
anti-persistent fractional Gaussian noise source. An essential element of the
theory is re-scaling to obtain a proper thermodynamic limit, and it captures
all temporal features of the toppling process obtained by numerical simulation
of the Bak-Tang-Wiesenfeld sandpile in this limit.Comment: 9 pages, 4 figure
Maximizing the hyperpolarizability of one-dimensional systems
Previous studies have used numerical methods to optimize the
hyperpolarizability of a one-dimensional quantum system. These studies were
used to suggest properties of one-dimensional organic molecules, such as the
degree of modulation of conjugation, that could potentially be adjusted to
improve the nonlinear-optical response. However, there were no conditions set
on the optimized potential energy function to ensure that the resulting
energies were consistent with what is observed in real molecules. Furthermore,
the system was placed into a one-dimensional box with infinite walls, forcing
the wavefunctions to vanish at the ends of the molecule. In the present work,
the walls are separated by a distance much larger than the molecule's length;
and, the variations of the potential energy function are restricted to levels
that are more typical of a real molecule. In addition to being a more
physically-reasonable model, our present approach better approximates the bound
states and approximates the continuum states - which are usually ignored. We
find that the same universal properties continue to be important for optimizing
the nonlinear-optical response, though the details of the wavefunctions differ
from previous result.Comment: 10 pages, 5 figure
Studies on optimizing potential energy functions for maximal intrinsic hyperpolarizability
We use numerical optimization to study the properties of (1) the class of
one-dimensional potential energy functions and (2) systems of point charges in
two-dimensions that yield the largest hyperpolarizabilities, which we find to
be within 30% of the fundamental limit. We investigate the character of the
potential energy functions and resulting wavefunctions and find that a broad
range of potentials yield the same intrinsic hyperpolarizability ceiling of
0.709.Comment: 9 pages, 9 figure
The thermal decomposition of copper (II) oxalate revisited
DSC, TG and TG-FT-IR, and XRPD have been used to examine the effects of supposedly inert atmospheres of argon and nitrogen on the mechanism of the thermal decomposition of copper(II) oxalate. The DSC curves in pure argon at 10 °C min[superscript −1] show a broad endotherm with onset at about 280 °C and maximum at about 295 °C. In mixtures of argon and nitrogen, as the proportion of argon gas is decreased, the endothermic character of the decomposition decreases until, when nitrogen is the main component, the decomposition exhibits a complex broad exothermic character. XRPD studies showed that, regardless of the proportions of nitrogen and argon, the DSC residues consisted of mainly copper metal with small amounts of copper(I) oxide (cuprite) and, under some conditions, traces of copper(II) oxide (tenorite). Various explanations for this behaviour are discussed and a possible answer lies in the disproportionation of CO[subscript 2](g) to form small quantities of O[subscript 2](g) or monatomic oxygen. The possibility exists that the exothermicity in nitrogen could be explained by reaction of the nitrogen with atomic oxygen to form N[subscript 2]O(g), but this product could not be detected using TG-FT-IR
Nucleation, solvation and boiling of helium excimer clusters
Helium excimers generated by a corona discharge were investigated in the gas
and normal liquid phases of helium as a function of temperature and pressure
between 3.8 and 5.0 K and 0.2 and 5.6 bar. Intense fluorescence in the visible
region showed the rotationally resolved
transition of He. With increasing pressure, the rotational lines merged
into single features. The observed pressure dependence of linewidths, shapes
and lineshifts established phases of coexistence and separation of
excimer-helium mixtures, providing detailed insight into nucleation, solvation
and boiling of He-He clusters.Comment: 5 pages, 5 figure
Sexual and marital trajectories and HIV infection among ever-married women in rural Malawi.
OBJECTIVE: To explore how sexual and marital trajectories are associated with HIV infection among ever-married women in rural Malawi. METHODS: Retrospective survey data and HIV biomarker data for 926 ever-married women interviewed in the Malawi Diffusion and Ideational Change Project were used. The associations between HIV infection and four key life course transitions considered individually (age at sexual debut, premarital sexual activity, entry into marriage and marital disruption by divorce or death) were examined. These transitions were then sequenced to construct trajectories that represent the variety of patterns in the data. The association between different trajectories and HIV prevalence was examined, controlling for potentially confounding factors such as age and region. RESULTS: Although each life course transition taken in isolation may be associated with HIV infection, their combined effect appeared to be conditional on the sequence in which they occurred. Although early sexual debut, not marrying one's first sexual partner and having a disrupted marriage each increased the likelihood of HIV infection, their risk was not additive. Women who both delayed sexual debut and did not marry their first partner are, once married, more likely to experience marital disruption and to be HIV-positive. Women who marry their first partner but who have sex at a young age, however, are also at considerable risk. CONCLUSIONS: These findings identify the potential of a life course perspective for understanding why some women become infected with HIV and others do not, as well as the differentials in HIV prevalence that originate from the sequence of sexual and marital transitions in one's life. The analysis suggests, however, the need for further data collection to permit a better examination of the mechanisms that account for variations in life course trajectories and thus in lifetime probabilities of HIV infection
- …