131 research outputs found

    A proposed measurement of the ß asymmetry in neutron decay with the Los Alamos Ultra-Cold Neutron Source

    Get PDF
    This article reviews the status of an experiment to study the neutron spin-electron angular correlation with the Los Alamos Ultra-Cold Neutron (UCN) source. The experiment will generate UCNs from a novel solid deuterium, spallation source, and polarize them in a solenoid magnetic field. The experiment spectrometer will consist of a neutron decay region in a solenoid magnetic field combined with several different detector possibilities. An electron beam and a magnetic spectrometer will provide a precise, absolute calibration for these detectors. An A-correlation measurement with a relative precision of 0.2% is expected by the end of 2002

    A boron-coated CCD camera for direct detection of Ultracold Neutrons (UCN)

    Full text link
    A new boron-coated CCD camera is described for direct detection of ultracold neutrons (UCN) through the capture reactions 10^{10}B (n,α\alpha0γ\gamma)7^7Li (6%) and 10^{10}B(n,α\alpha1γ\gamma)7^7Li (94%). The experiments, which extend earlier works using a boron-coated ZnS:Ag scintillator, are based on direct detections of the neutron-capture byproducts in silicon. The high position resolution, energy resolution and particle ID performance of a scientific CCD allows for observation and identification of all the byproducts α\alpha, 7^7Li and γ\gamma (electron recoils). A signal-to-noise improvement on the order of 104^4 over the indirect method has been achieved. Sub-pixel position resolution of a few microns is demonstrated. The technology can also be used to build UCN detectors with an area on the order of 1 m2^2. The combination of micrometer scale spatial resolution, few electrons ionization thresholds and large area paves the way to new research avenues including quantum physics of UCN and high-resolution neutron imaging and spectroscopy.Comment: 10 pages, 8 figure

    Status of the UCNÏ„ experiment

    Get PDF
    The neutron is the simplest nuclear system that can be used to probe the structure of the weak interaction and search for physics beyond the standard model. Measurements of neutron lifetime and β-decay correlation coefficients with precisions of 0.02% and 0.1%, respectively, would allow for stringent constraints on new physics. The UCNτ experiment uses an asymmetric magneto-gravitational UCN trap with in situ counting of surviving neutrons to measure the neutron lifetime, τ_n = 877.7s (0.7s)_(stat) (+0.4/−0.2s)_(sys). We discuss the recent result from UCNτ, the status of ongoing data collection and analysis, and the path toward a 0.25 s measurement of the neutron lifetime with UCNτ

    Measurement of the neutron lifetime using an asymmetric magneto- gravitational trap and in situ detection

    Full text link
    The precise value of the mean neutron lifetime, τn\tau_n, plays an important role in nuclear and particle physics and cosmology. It is a key input for predicting the ratio of protons to helium atoms in the primordial universe and is used to search for new physics beyond the Standard Model of particle physics. There is a 3.9 standard deviation discrepancy between τn\tau_n measured by counting the decay rate of free neutrons in a beam (887.7 ±\pm 2.2 s) and by counting surviving ultracold neutrons stored for different storage times in a material trap (878.5±\pm0.8 s). The experiment described here eliminates loss mechanisms present in previous trap experiments by levitating polarized ultracold neutrons above the surface of an asymmetric storage trap using a repulsive magnetic field gradient so that the stored neutrons do not interact with material trap walls and neutrons in quasi-stable orbits rapidly exit the trap. As a result of this approach and the use of a new in situ neutron detector, the lifetime reported here (877.7 ±\pm 0.7 (stat) +0.4/-0.2 (sys) s) is the first modern measurement of τn\tau_n that does not require corrections larger than the quoted uncertainties.Comment: 9 pages, 3 figures, 2 table

    Fandom and Coercive Empowerment: The commissioned production of Chinese online literature

    Get PDF
    This article examines how the relationship between consumers and producers of cultural products is shaped by the proprietary nature of digital platforms. Drawing on 4 years of online observation and analysis, we examine the relationship between the producers of online Chinese fiction, amateur writers, and their consumers, that is, the fan communities of readers who respond to their work. Enabled by Chinese literary websites, readers act like sponsors who provide emotional and financial incentives for writers to produce online fictions by commenting, voting, and sending money. Readers become actively involved not just because of the content of the stories but because they form strong commitments to stories and their writers, and gain reciprocity and a sense of self-determination during the interactional process. We argue that although writers are freer from state control online, they are still beholden to the whims of their fans because of what we call the commissioned production of fictions. We contribute to fan community studies by analyzing how commercialized website settings structure the strategies available to participants, how these settings affect the content of the cultural products, and how the Chinese historical and cultural contexts impact the dynamics of the online community.postprin

    Monte Carlo of Trapped Ultracold Neutrons in the UCNÏ„ Trap

    Get PDF
    In the UCNτ experiment, ultracold neutrons (UCN) are confined by magnetic fields and the Earth’s gravitational field. Field-trapping mitigates the problem of UCN loss on material surfaces, which caused the largest correction in prior neutron experiments using material bottles. However, the neutron dynamics in field traps differ qualitatively from those in material bottles. In the latter case, neutrons bounce off material surfaces with significant diffusivity and the population quickly reaches a static spatial distribution with a density gradient induced by the gravitational potential. In contrast, the field-confined UCN—whose dynamics can be described by Hamiltonian mechanics—do not exhibit the stochastic behaviors typical of an ideal gas model as observed in material bottles. In this report, we will describe our efforts to simulate UCN trapping in the UCNτ magneto-gravitational trap. We compare the simulation output to the experimental results to determine the parameters of the neutron detector and the input neutron distribution. The tuned model is then used to understand the phase space evolution of neutrons observed in the UCNτ experiment. We will discuss the implications of chaotic dynamics on controlling the systematic effects, such as spectral cleaning and microphonic heating, for a successful UCN lifetime experiment to reach a 0.01% level of precision

    An Antiviral Response Directed by PKR Phosphorylation of the RNA Helicase A

    Get PDF
    The double-stranded RNA-activated protein kinase R (PKR) is a key regulator of the innate immune response. Activation of PKR during viral infection culminates in phosphorylation of the α subunit of the eukaryotic translation initiation factor 2 (eIF2α) to inhibit protein translation. A broad range of regulatory functions has also been attributed to PKR. However, as few additional PKR substrates have been identified, the mechanisms remain unclear. Here, PKR is shown to interact with an essential RNA helicase, RHA. Moreover, RHA is identified as a substrate for PKR, with phosphorylation perturbing the association of the helicase with double-stranded RNA (dsRNA). Through this mechanism, PKR can modulate transcription, as revealed by its ability to prevent the capacity of RHA to catalyze transactivating response (TAR)–mediated type 1 human immunodeficiency virus (HIV-1) gene regulation. Consequently, HIV-1 virions packaged in cells also expressing the decoy RHA peptides subsequently had enhanced infectivity. The data demonstrate interplay between key components of dsRNA metabolism, both connecting RHA to an important component of innate immunity and delineating an unanticipated role for PKR in RNA metabolism

    Type I Interferons and Interferon Regulatory Factors Regulate TNF-Related Apoptosis-Inducing Ligand (TRAIL) in HIV-1-Infected Macrophages

    Get PDF
    TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family that participates in HIV-1 pathogenesis through the depletion of CD4+ T cells. TRAIL is expressed on the cell membrane of peripheral immune cells and can be cleaved into a soluble, secreted form. The regulation of TRAIL in macrophages during HIV-1 infection is not completely understood. In this study, we investigated the mechanism(s) of TRAIL expression in HIV-1-infected macrophages, an important cell type in HIV-1 pathogenesis. A human monocyte-derived macrophage (MDM) culture system was infected with macrophage-tropic HIV-1ADA, HIV-1JR-FL, or HIV-1BAL strains. TRAIL, predominantly the membrane-bound form, increased following HIV-1 infection. We found that HIV-1 infection also induced interferon regulatory factor (IRF)-1, IRF-7 gene expression and signal transducers and activators of transcription 1 (STAT1) activation. Small interfering RNA knockdown of IRF-1 or IRF-7, but not IRF-3, reduced STAT1 activation and TRAIL expression. Furthermore, the upregulation of IRF-1, IRF-7, TRAIL, and the activation of STAT1 by HIV-1 infection was reduced by the treatment of type I interferon (IFN)-neutralizing antibodies. In addition, inhibition of STAT1 by fludarabine abolished IRF-1, IRF-7, and TRAIL upregulation. We conclude that IRF-1, IRF-7, type I IFNs, and STAT1 form a signaling feedback loop that is critical in regulating TRAIL expression in HIV-1-infected macrophages
    • …
    corecore