63 research outputs found

    CAnceR IN PreGnancy (CARING) - a retrospective study of cancer diagnosed during pregnancy in the United Kingdom

    Get PDF
    BACKGROUND: The incidence of cancer diagnosed during pregnancy is increasing. Data relating to investigation and management, as well as maternal and foetal outcomes is lacking in a United Kingdom (UK) population.METHODS: In this retrospective study we report data from 119 patients diagnosed with cancer during pregnancy from 14 cancer centres in the UK across a five-year period (2016-2020).RESULTS: Median age at diagnosis was 33 years, with breast, skin and haematological the most common primary sites. The majority of cases were new diagnoses (109 patients, 91.6%). Most patients were treated with radical intent (96 patients, 80.7%), however, gastrointestinal cancers were associated with a high rate of palliative intent treatment (63.6%). Intervention was commenced during pregnancy in 68 (57.1%) patients; 44 (37%) had surgery and 31 (26.1%) received chemotherapy. Live births occurred in 98 (81.7%) of the cases, with 54 (55.1%) of these delivered by caesarean section. Maternal mortality during the study period was 20.2%.CONCLUSIONS: This is the first pan-tumour report of diagnosis, management and outcomes of cancer diagnosed during pregnancy in the UK. Our findings demonstrate proof of concept that data collection is feasible and highlight the need for further research in this cohort of patients.</p

    Tomato: a crop species amenable to improvement by cellular and molecular methods

    Get PDF
    Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures. In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.

    A conserved myotubularin-related phosphatase regulates autophagy by maintaining autophagic flux

    Get PDF
    Macroautophagy (autophagy) targets cytoplasmic cargoes to the lysosome for degradation. Like all vesicle trafficking, autophagy relies on phosphoinositide identity, concentration, and localization to execute multiple steps in this catabolic process. Here, we screen for phosphoinositide phosphatases that influence autophagy in Drosophila and identify CG3530. CG3530 is homologous to the human MTMR6 subfamily of myotubularin-related 3-phosphatases, and therefore, we named it dMtmr6. dMtmr6, which is required for development and viability in Drosophila, functions as a regulator of autophagic flux in multiple Drosophila cell types. The MTMR6 family member MTMR8 has a similar function in autophagy of higher animal cells. Decreased dMtmr6 and MTMR8 function results in autophagic vesicle accumulation and influences endolysosomal homeostasis

    Oeffentliche Bestattung

    No full text

    Macroscopic information-based taste representations in insular cortex are shaped by stimulus concentration

    No full text
    Taste processing is an essential ability in all animals signaling potential harm or benefit of ingestive behavior. However, current evidence for cortical taste representations remains contradictory. To address this issue, high-resolution functional MRI (fMRI) and multivariate pattern analysis were used to characterize taste-related informational content in human insular cortex, which contains primary gustatory cortex. Human participants judged pleasantness and intensity of low- and high-concentration tastes (salty, sweet, sour, and bitter) in two fMRI experiments on two different days to test for task- and concentration-invariant taste representations. We observed patterns of fMRI activity within insular cortex narrowly tuned to specific tastants consistently across tasks in all participants. Fewer patterns responded to more than one taste category. Importantly, changes in taste concentration altered the spatial layout of putative taste-specific patterns with distinct, almost nonoverlapping patterns for each taste category at different concentration levels. Together, our results point at macroscopic representations in human insular cortex as a complex function of taste category and concentration rather than representations based solely on taste identity
    corecore