121 research outputs found

    How can natural products serve as a viable source of lead compounds for the development of new/novel anti-malarials?

    Get PDF
    Malaria continues to be an enormous global health challenge, with millions of new infections and deaths reported annually. This is partly due to the development of resistance by the malaria parasite to the majority of established anti-malarial drugs, a situation that continues to hamper attempts at controlling the disease. This has spurred intensive drug discovery endeavours geared towards identifying novel, highly active anti-malarial drugs, and the identification of quality leads from natural sources would greatly augment these efforts. The current reality is that other than compounds that have their foundation in historic natural products, there are no other compounds in drug discovery as part of lead optimization projects and preclinical development or further that have originated from a natural product start-point in recent years. This paper briefly presents both classical as well as some more modern, but underutilized, approaches that have been applied outside the field of malaria, and which could be considered in enhancing the potential of natural products to provide or inspire the development of anti-malarial lead compounds

    Peatland Initiation, Carbon Accumulation, and 2 ka Depth in the James Bay Lowland and Adjacent Regions

    Get PDF
    Copyright © 2014 University of Colorado at Boulder, Institute of Arctic and Alpine ResearchPeatlands surrounding Hudson and James Bays form the second largest peatland complex in the world and contain major stores of soil carbon (C). This study utilized a transect of eight ombrotrophic peat cores from remote regions of central and northern Ontario to quantify the magnitude and rate of C accumulation since peatland initiation and for the past 2000 calendar years before present (2 ka). These new data were supplemented by 17 millennially resolved chronologies from a literature review covering the Boreal Shield, Hudson Plains, and Taiga Shield bordering Hudson and James Bays. Peatlands initiated in central and northern Ontario by 7.8 ka following deglaciation and isostatic emergence of northern areas to above sea level. Total C accumulated since inception averaged 109.7 ± (std. dev.) 36.2 kg C m–2. Approximately 40% of total soil C has accumulated since 2 ka at an average apparent rate of 20.2 ± 6.9 g C m–2 yr–1. The 2 ka depths correlate significantly and positively with modern gridded climate estimates for mean annual precipitation, mean annual air temperature, growing degree-days > 0 °C, and photosynthetically active radiation integrated over days > 0 °C. There are significantly shallower depths in permafrost peatlands. Vertical peat accumulation was likely constrained by temperature, growing season length, and photosynthetically active radiation over the last 2 ka in the Hudson Bay Lowlands and surrounding regions.US National Science Foundatio

    Outlier SNPs detect weak regional structure against a background of genetic homogeneity in the Eastern Rock Lobster, Sagmariasus verreauxi

    Get PDF
    Genetic differentiation is characteristically weak in marine species making assessments of population connectivity and structure difficult. However, the advent of genomic methods has increased genetic resolution, enabling studies to detect weak, but significant population differentiation within marine species. With an increasing number of studies employing high resolution genome-wide techniques, we are realising that the connectivity of marine populations is often complex and quantifying this complexity can provide an understanding of the processes shaping marine species genetic structure and to inform long-term, sustainable management strategies. This study aims to assess the genetic structure, connectivity, and local adaptation of the Eastern Rock Lobster (Sagmariasus verreauxi), which has a maximum pelagic larval duration of 12 months and inhabits both subtropical and temperate environments. We used 645 neutral and 15 outlier SNPs to genotype lobsters collected from the only two known breeding populations and a third episodic population—encompassing S. verreauxi's known range. Through examination of the neutral SNP panel, we detected genetic homogeneity across the three regions, which extended across the Tasman Sea encompassing both Australian and New Zealand populations. We discuss differences in neutral genetic signature of S. verreauxi and a closely related, co-distributed rock lobster, Jasus edwardsii, determining a regional pattern of genetic disparity between the species, which have largely similar life histories. Examination of the outlier SNP panel detected weak genetic differentiation between the three regions. Outlier SNPs showed promise in assigning individuals to their sampling origin and may prove useful as a management tool for species exhibiting genetic homogeneity

    High Connectivity in the Deepwater Snapper Pristipomoides filamentosus (Lutjanidae) across the Indo-Pacific with Isolation of the Hawaiian Archipelago

    Get PDF
    In the tropical Indo-Pacific, most phylogeographic studies have focused on the shallow-water taxa that inhabit reefs to approximately 30 m depth. Little is known about the large predatory fishes, primarily snappers (subfamily Etelinae) and groupers (subfamily Epinephelinae) that occur at 100–400 m. These long-lived, slow-growing species support fisheries across the Indo-Pacific, yet no comprehensive genetic surveys within this group have been conducted. Here we contribute the first range-wide survey of a deepwater Indo-Pacific snapper, Pristipomoides filamentosus, with special focus on Hawai'i. We applied mtDNA cytochrome b and 11 microsatellite loci to 26 samples (N = 1,222) collected across 17,000 km from Hawai'i to the western Indian Ocean. Results indicate that P. filamentosus is a highly dispersive species with low but significant population structure (mtDNA ΦST = 0.029, microsatellite FST = 0.029) due entirely to the isolation of Hawai'i. No population structure was detected across 14,000 km of the Indo-Pacific from Tonga in the Central Pacific to the Seychelles in the western Indian Ocean, a pattern rarely observed in reef species. Despite a long pelagic phase (60–180 days), interisland dispersal as adults, and extensive gene flow across the Indo-Pacific, P. filamentosus is unable to maintain population connectivity with Hawai'i. Coalescent analyses indicate that P. filamentosus may have colonized Hawai'i 26 K–52 K y ago against prevailing currents, with dispersal away from Hawai'i dominating migration estimates. P. filamentosus harbors low genetic diversity in Hawai'i, a common pattern in marine fishes, and our data indicate a single archipelago-wide stock. However, like the Hawaiian Grouper, Hyporthodus quernus, this snapper had several significant pairwise comparisons (FST) clustered around the middle of the archipelago (St. Rogatien, Brooks Banks, Gardner) indicating that this region may be isolated or (more likely) receives input from Johnston Atoll to the south

    Habitat partitioning and vulnerability of sharks in the Great Barrier Reef Marine Park

    Get PDF
    Sharks present a critical conservation challenge, but little is known about their spatial distribution and vulnerability, particularly in complex seascapes such as Australia's Great Barrier Reef Marine Park (GBRMP). We review (1) the distribution of shark species among the primary habitats of the GBRMP (coral reefs, inshore/shelf, pelagic and deep-water habitats) (2) the relative exploitation of each species by fisheries, and (3) how current catch rates interact with their vulnerability and trophic index. Excluding rays and chimaeras, we identify a total of 82 shark species in the GBRMP. We find that shark research in the GBRMP has yielded little quantitative information on most species. Reef sharks are largely site-fidelic, but can move large distances and some regularly use non-reef habitats. Inshore and shelf sharks use coastal habitats either exclusively or during specific times in their life cycle (e.g. as nurseries). Virtually nothing is known about the distribution and habitat use of the GBRMP's pelagic and deep-water sharks. At least 46 species (53.5 %) are caught in one or more fisheries, but stock assessments are lacking for most. At least 17 of the sharks caught are considered highly vulnerable to exploitation. We argue that users of shark resources should be responsible for demonstrating that a fishery is sustainable before exploitation is allowed to commence or continue. This fundamental change in management principle will safeguard against stock collapses that have characterised many shark fisheries

    Real-Time Monitoring of Wind Turbine Blade Alignment Using Laser Displacement and Strain Measurement

    No full text
    Wind turbine (WT) blade structural health monitoring (SHM) is important as it allows damage or misalignment to be detected before it causes catastrophic damage such as that caused by the blade striking the tower. Both of these can be very costly and justify the expense of monitoring. This paper aims to deduce whether a SICK DT-50 laser displacement sensor (LDS) installed inside the tower and a half-bridge type II strain gauge bridge installed at the blade root are capable of detecting ice loading, misalignment, and bolt loosening while the WT is running. Blade faults were detected by the virtual instrument, which conducted a z-test at 99% and 98% significance levels for the LDS and at 99.5% and 99% significance levels for the strain gauge. The significance levels chosen correspond to typical Z-values for statistical tests. A higher significance was used for the strain gauge as it used a one-tail test as opposed to a two-tail test for the LDS. The two different tests were used to test for different sensitivities of the tests. The results show that the strain gauge was capable of detecting all the mass loading cases to 99.5% significance, and the LDS was capable of detecting misalignment, bolt loosening, and 3 out of 4 mass loading cases to 99% significance. It was able to detect the least severe mass loading case of 11 g at the root to only a 98% significance

    Cytochrome-b sequence variation among parrots

    Get PDF
    The nucleotide sequence of a 307 bp fragment of the mitochondrial cytochrome-6 gene was determined for 12 species of parrot, using the polymerase chain reaction and direct sequencing. Sequence divergence ranged from 26–54 differences in pairwise comparisons, with the majority of base substitutions occurring at third positions of codons. The transitionrtransversion ratio was determined to be higher (approximately 24.3:1) in recently divergent parrot lineages than has generally been observed in other groups. Strongly biased base composition, particularly at the third position of codons, is evident among the sequences. Phylogenetic relationships among more divergent taxa were estimated, using only transversion substitutions, while all the substitutions were useful for closely related taxa. The African genera Psittacus and Pokephalus are closely related, in contrast to the Australian genera Nymphicus, Purpureicephalus and Melopsittacus, which represent more divergent lineages. The cockatoos appear to represent an ancient lineage within the parrots

    Variability in multiple paternity rates for grey reef sharks (Carcharhinus amblyrhynchos) and scalloped hammerheads (Sphyrna lewini)

    Get PDF
    This study assessed the presence and prevalence of multiple paternity (MP) in litters of grey reef sharks (Carcharhinus amblyrhynchos) and scalloped hammerheads (Sphyrna lewini) opportunistically caught in Papua New Guinea (PNG). Litter size between species were significantly different with an average of 3.3 pups for grey reef sharks and 17.2 pups for scalloped hammerhead. Using 14 and 10 microsatellite loci respectively, we identified MP in 66% of grey reef sharks (4 out of 6 litters) and 100% MP in scalloped hammerheads (5 litters). We found high paternal skew (the uneven contribution of sires per litter) and a positive correlation between female adult size and litter size in scalloped hammerheads but not in grey reef sharks. Differences in the frequency of MP between species and the identification of paternal skew may be linked with mating strategies and post-copulatory mechanisms. Multiple paternity is thought to benefit populations by enhancing genetic diversity therefore increasing the population's genetic resilience to extrinsic pressures. The identification of MP in two shark species reported here, further elucidates the complex breeding strategies elasmobranchs undertake

    Discriminating stocks of scomber australasicus using a holistic approach: a pilot study

    No full text
    This study assesses the suitability of genetic approaches, parasitology and otolith microchemistry for determining the stock structure of spotted chub mackerel Scomber australasicus in Australasian waters and establishes protocols for using these techniques to determine variability within and among putative stocks. Seventy-five fish from three locations across the geographical distribution of S. australasicus in Australian waters (SE Queensland, South Australia and SE Western Australia) and one location in New Zealand were examined. Genetics and parasite assemblage were analyzed for all fish; otolith microchemistry of Australian fish was also examined. Techniques were successfully developed to extract and amplify a segment of the mtDNA control region, and results showed significant genetic heterogeneity among fish from Western Australia, Queensland, and New Zealand. Parasite analysis identified several taxa that are suitable for use as biological tags and enabled discrimination of fish collected from the four locations. Studies of otolith microchemistry using LA-ICP-MS had sufficient power to distinguish fish from the three Australian locations. This study suggests that there are multiple stocks of S. australasicus within Australian waters, proposes protocols for future studies of finer scale stock structure, and discusses the efficacy of each technique for stock discrimination

    Meteoric Effects on Attitude Control of Space Vehicles

    No full text
    corecore