530 research outputs found
Bedrest in healthy women: Effects of menstrual function and oral contraceptives
With the development of the space shuttle program, space flight for the first time is available to individuals who have not been specially selected and trained to be astronauts. In addition, women are being actively recruited into the space program, both as mission specialists and as career astronauts. One purpose of this project was to examine some of the physiological responses of women to a simulated weightlessness program (12 day horizontal bedrest), to compare their responses to those reported in men during similar programs, and to test whether menstrual function might alter some of the physiological changes which occur during bedrest, specifically changes in the plasma volume, exercise tolerance, and venous compliance before and after bedrest
Subdiffusion and weak ergodicity breaking in the presence of a reactive boundary
We derive the boundary condition for a subdiffusive particle interacting with
a reactive boundary with finite reaction rate. Molecular crowding conditions,
that are found to cause subdiffusion of larger molecules in biological cells,
are shown to effect long-tailed distributions with identical exponent for both
the unbinding times from the boundary to the bulk and the rebinding times from
the bulk. This causes a weak ergodicity breaking: typically, an individual
particle either stays bound or remains in the bulk for very long times. We
discuss why this may be beneficial for in vivo gene regulation by DNA-binding
proteins, whose typical concentrations are nanomolarComment: 4 pages, 1 figure, REVTeX4, accepted to Phys Rev Lett, some typos
correcte
The Role of Checkpoint Kinase 1 in Sensitivity to Topoisomerase I Poisons
Agents that target topoisomerase I are widely utilized to treat human cancer. Previous studies have indicated that both the ataxia telangiectasia mutated (ATM)/ checkpoint kinase (Chk) 2 and ATM- and Rad 3-related (ATR)/Chk1 checkpoint pathways are activated after treatment with these agents. The relative contributions of these two pathways to survival of cells after treatment with topoisomerase I poisons are currently unknown. To address this issue, we assessed the roles of ATR, Chk1, ATM, and Chk2 in cells treated with the topoisomerase I poisons camptothecin and 7-ethyl-10-hydroxycamptothecin (SN-38), the active metabolite of irinotecan. Colony forming assays demonstrated that down-regulation of ATR or Chk1 sensitized cells to SN-38 and camptothecin. In contrast, ATM and Chk2 had minimal effect of sensitivity to SN-38 or camptothecin. Additional experiments demonstrated that the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin, which down-regulates Chk1, also sensitized a variety of human carcinoma cell lines to SN-38. Collectively, these results show that the ATR/Chk1 pathway plays a predominant role in the response to topoisomerase I inhibitors in carcinoma cells and identify a potential approach for enhancing the efficacy of these drugs
Nano-scale superhydrophobicity: suppression of protein adsorption and promotion of flow-induced detachment
Wall adsorption is a common problem in microfluidic devices, particularly when proteins are used. Here we show how superhydrophobic surfaces can be used to reduce protein adsorption and to promote desorption. Hydrophobic surfaces, both smooth and having high surface roughness of varying length scales (to generate superhydrophobicity), were incubated in protein solution. The samples were then exposed to flow shear in a device designed to simulate a microfluidic environment. Results show that a similar amount of protein adsorbed onto smooth and nanometer-scale rough surfaces, although a greater amount was found to adsorb onto superhydrophobic surfaces with micrometer scale roughness. Exposure to flow shear removed a considerably larger proportion of adsorbed protein from the superhydrophobic surfaces than from the smooth ones, with almost all of the protein being removed from some nanoscale surfaces. This type of surface may therefore be useful in environments, such as microfluidics, where protein sticking is a problem and fluid flow is present. Possible mechanisms that explain the behaviour are discussed, including decreased contact between protein and surface and greater shear stress due to interfacial slip between the superhydrophobic surface and the liquid
A modular microfluidic platform to enable complex and customisable in vitro models for neuroscience
Disorders of the central nervous system (CNS) represent a global health challenge and an increased understanding of the CNS in both physiological and pathophysiological states is essential to tackle the problem. Modelling CNS conditions is difficult, as traditional in vitro models fail to recapitulate precise microenvironments and animal models of complex disease often have limited translational validity. Microfluidic and organ-on-chip technologies offer an opportunity to develop more physiologically relevant and complex in vitro models of the CNS. They can be developed to allow precise cellular patterning and enhanced experimental capabilities to study neuronal function and dysfunction. To improve ease-of-use of the technology and create new opportunities for novel in vitro studies, we introduce a modular platform consisting of multiple, individual microfluidic units that can be combined in several configurations to create bespoke culture environments. Here, we report proof-of-concept experiments creating complex in vitro models and performing functional analysis of neuronal activity across modular interfaces. This platform technology presents an opportunity to increase our understanding of CNS disease mechanisms and ultimately aid the development of novel therapies
Investigation about the effect of manufacturing parameters on the mechanical behaviour of natural fibre nonwovens reinforced thermoplastic composites
To date, nonwoven fabrics made with natural fibres and thermoplastic commingled fibres have been extensively used in the composite industry for a wide variety of applications. This paper presents an innovative study about the effect of the manufacturing parameters on the mechanical behaviour of flax/PP nonwoven reinforced composites. The mechanical properties of nonwoven fabric reinforced composites are related directly to the ones of dry nonwoven reinforcements, which depend strongly on the nonwoven manufacturing parameters, such as the needle-punching and areal densities. Consequently, the influence of these manufacturing parameters will be analysed through the tensile and flexural properties. The results demonstrated that the more areal density the nonwoven fabric has, the more the mechanical behaviour can be tested for composites. By contrast, it has a complex influence on needle-punching density on the load-strain and bending behaviours at the composite scale
- …