148 research outputs found

    Role of inherent soil characteristics in assessing soil health across Missouri

    Get PDF
    Soil health indicator values vary based on parent material, native vegetation, and other soil forming factors; therefore, useful interpretations require consideration of inherent soil characteristics. Our objective was to evaluate the distribution of soil health indicators across soil and climate gradients throughout the state of Missouri through a statewide cover crop cost-share program. Soil samples (0–7 cm) were collected from 5,300 agricultural fields and analyzed for several soil health indicators. Comparisons were made among six regions in the state based on Major Land Resource Area and county boundaries. Results varied for soil organic carbon (C), active C, potentially mineralizable nitrogen, water stable aggregates, and cation exchange capacity by region and corresponded with soil forming factors. Interpretation of soil health indicators must account for regional factors, recognizing that areas with different inherent values have a different potential for soil health

    The Atlantic Ocean at the last glacial maximum: 1. Objective mapping of the GLAMAP sea-surface conditions

    Get PDF
    Recent efforts of the German paleoceanographic community have resulted in a unique data set of reconstructed sea-surface temperature for the Atlantic Ocean during the Last Glacial Maximum, plus estimates for the extents of glacial sea ice. Unlike prior attempts, the contributing research groups based their data on a common definition of the Last Glacial Maximum chronozone and used the same modern reference data for calibrating the different transfer techniques. Furthermore, the number of processed sediment cores was vastly increased. Thus the new data is a significant advance not only with respect to quality, but also to quantity. We integrate these new data and provide monthly data sets of global sea-surface temperature and ice cover, objectively interpolated onto a regular 1°x1° grid, suitable for forcing or validating numerical ocean and atmosphere models. This set is compared to an existing subjective interpolation of the same base data, in part by employing an ocean circulation model. For the latter purpose, we reconstruct sea surface salinity from the new temperature data and the available oxygen isotope measurements

    Soil sample timing, nitrogen fertilization, and incubation length influence anaerobic potentially mineralizable nitrogen

    Get PDF
    Understanding the variables that affect the anaerobic potentially mineralizable N (PMNan) test should lead to a standard procedure of sample collection and incubation length, improving PMNan as a tool in corn (Zea mays L.) N management. We evaluated the effect of soil sample timing (preplant and V5 corn development stage [V5]), N fertilization (0 and 180 kg ha−1) and incubation length (7, 14, and 28 d) on PMNan (0–30 cm) across a range of soil properties and weather conditions. Soil sample timing, N fertilization, and incubation length affected PMNan differently based on soil and weather conditions. Preplant vs. V5 PMNan tended to be greater at sites that received \u3c 183 mm of precipitation or \u3c 359 growing degree-days (GDD) between preplant and V5, or had soil C/N ratios \u3e 9.7:1; otherwise, V5 PMNan tended to be greater than preplant PMNan. The PMNan tended to be greater in unfertilized vs. fertilized soil in sites with clay content \u3e 9.5%, total C \u3c 24.2 g kg−1, soil organic matter (SOM) \u3c 3.9 g kg−1, or C to N ratios \u3c 11.0:1; otherwise, PMNan tended to be greater in fertilized vs. unfertilized soil. Longer incubation lengths increased PMNan at all sites regardless of sampling methods. Since PMNan is sensitive to many factors (sample timing, N fertilization, incubation length, soil properties, and weather conditions), it is important to follow a consistent protocol to compare PMNan among sites and potentially use PMNan to improve corn N management

    Integrated North Sea grids: The costs, the benefits and their distribution between countries

    Get PDF
    A large number of offshore wind farms and interconnectors are expected to be constructed in the North Sea region over the coming decades, creating substantial opportunities for the deployment of integrated network solutions. Creating interconnected offshore grids that combine cross-border links and connections of offshore plants to shore offers multiple economic and environmental advantages for Europe's energy system. However, despite evidence that integrated solutions can be more beneficial than traditional radial connection practices, no such projects have been deployed yet. In this paper we quantify costs and benefits of integrated projects and investigate to which extent the cost-benefit sharing mechanism between participating countries can impede or encourage the development of integrated projects. Three concrete interconnection case studies in the North Sea area are analysed in detail using a national-level power system model. Model outputs are used to compute the net benefit of all involved stakeholders under different allocation schemes. Given the asymmetric distribution of costs and benefits, we recommend to consistently apply the Positive Net Benefit Differential mechanism as a starting point for negotiations on the financial closure of investments in integrated offshore infrastructure

    United States Midwest Soil and Weather Conditions Influence Anaerobic Potentially Mineralizable Nitrogen

    Get PDF
    Nitrogen provided to crops through mineralization is an important factor in N management guidelines. Understanding of the interactive effects of soil and weather conditions on N mineralization needs to be improved. Relationships between anaerobic potentially mineralizable N (PMNan) and soil and weather conditions were evaluated under the contrasting climates of eight US Midwestern states. Soil was sampled (0–30 cm) for PMNan analysis before pre-plant N application (PP0N) and at the V5 development stage from the pre-plant 0 (V50N) and 180 kg N ha−1 (V5180N) rates and incubated for 7, 14, and 28 d. Even distribution of precipitation and warmer temperatures before soil sampling and greater soil organic matter (SOM) increased PMNan. Soil properties, including total C, SOM, and total N, had the strongest relationships with PMNan (R2 ≀ 0.40), followed by temperature (R2 ≀ 0.20) and precipitation (R2 ≀ 0.18) variables. The strength of the relationships between soil properties and PMNan from PP0N, V50N, and V5180N varied by ≀10%. Including soil and weather in the model greatly increased PMNan predictability (R2 ≀ 0.69), demonstrating the interactive effect of soil and weather on N mineralization at different times during the growing season regardless of N fertilization. Delayed soil sampling (V50N) and sampling after fertilization (V5180N) reduced PMNan predictability. However, longer PMNan incubations improved PMNan predictability from both V5 soil samplings closer to the PMNan predictability from PP0N, indicating the potential of PMNan from longer incubations to provide improved estimates of N mineralization when N fertilizer is applied

    A "critical" climatic evaluation of last interglacial (MIS 5e) records from the Norwegian Sea

    Get PDF
    Sediment cores from the Norwegian Sea were studied to evaluate interglacial climate conditions of the marine isotope stage 5e (MIS 5e). Using planktic forminiferal assemblages as the core method, a detailed picture of the evolution of surface water conditions was derived. According to our age model, a step-like deglaciation of the Saalian ice sheets is noted between ca. 135 and 124.5 Kya, but the deglaciation shows little response with regard to surface ocean warming. From then on, the rapidly increasing abundance of subpolar forminifers, concomitant with decreasing iceberg indicators, provides evidence for the development of interglacial conditions sensu stricto (5e-ss), a period that lasted for about 9 Ky. As interpreted from the foraminiferal records, and supported by the other proxies, this interval of 5e-ss was in two parts: showing an early warm phase, but with a fresher, i.e., lower salinity, water mass, and a subsequent cooling phase that lasted until ca. 118.5 Kya. After this time, the climatic optimum with the most intense advection of Atlantic surface water masses occurred until ca. 116 Kya. A rapid transition with two notable climatic perturbations is observed subsequently during the glacial inception. Overall, the peak warmth of the last interglacial period occurred relatively late after deglaciation, and at no time did it reach the high warmth level of the early Holocene. This finding must be considered when using the last interglacial situation as an analogue model for enhanced meridional transfer of ocean heat to the Arctic, with the prospect of a future warmer climate

    Relating four‐day soil respiration to corn nitrogen fertilizer needs across 49 U.S. Midwest fields

    Get PDF
    Soil microbes drive biological functions that mediate chemical and physical processes necessary for plants to sustain growth. Laboratory soil respiration has been proposed as one universal soil health indicator representing these functions, potentially informing crop and soil management decisions. Research is needed to test the premise that soil respiration is helpful for profitable in‐season nitrogen (N) rate management decisions in corn (Zea mays L.). The objective of this research was two‐fold: (i) determine if the amount of N applied at the time of planting effected soil respiration, and (ii) evaluate the relationship of soil respiration to corn yield response to fertilizer N application. A total of 49 N response trials were conducted across eight states over three growing seasons (2014–2016). The 4‐day Comprehensive Assessment of Soil Health (CASH) soil respiration method was used to quantify soil respiration. Averaged over all sites, N fertilization did not impact soil respiration, but at four sites soil respiration decreased as N fertilizer rate applied at‐planting increased. Across all site‐years, soil respiration was moderately related to the economical optimum N rate (EONR) (r2 = 0.21). However, when analyzed by year, soil respiration was more strongly related to EONR in 2016 (r2 = 0.50) and poorly related for the first two years (r2 \u3c 0.20). These results illustrate the factors influencing the ability of laboratory soil respiration to estimate corn N response, including growing‐season weather, and the potential of fusing soil respiration with other soil and weather measurements for improved N fertilizer recommendations

    Potential links between surging ice sheets, circulation changes and the Dansgaard Oeschger cycles in the Irminger Sea, 60-18 kyr.

    Get PDF
    Surface and deepwater paleoclimate records in Irminger Sea core SO82-5 (59°N, 31°W) and Icelandic Sea core PS2644 (68°N, 22°W) exhibit large fluctuations in thermohaline circulation (THC) from 60 to 18 calendar kyr B.P., with a dominant periodicity of 1460 years from 46 to 22 calendar kyr B.P., matching the Dansgaard-Oeschger (D-O) cycles in the Greenland Ice Sheet Project 2 (GISP2) temperature record [Grootes and Stuiver, 1997]. During interstadials, summer sea surface temperatures (SST<inf>su</inf>) in the Irminger Sea averaged to 8°C, and sea surface salinities (SSS) averaged to ∌36.5, recording a strong Irminger Current and Atlantic THC. During stadials, SST<inf>su</inf> dropped to 2°-4°C, in phase with SSS drops by ∌1-2. They reveal major meltwater injections along with the East Greenland Current, which turned off the North Atlantic deepwater convection and hence the heat advection to the north, in harmony with various ocean circulation and ice models. On the basis of the IRD composition, icebergs came from Iceland, east Greenland, and perhaps Svalbard and other northern ice sheets. However, the southward drifting icebergs were initially jammed in the Denmark Strait, reaching the Irminger Sea only with a lag of 155-195 years. We also conclude that the abrupt stadial terminations, the D-O warming events, were tied to iceberg melt via abundant seasonal sea ice and brine water formation in the meltwater-covered northwestern North Atlantic. In the 1/1460-year frequency band, benthic ÎŽ18O brine water spikes led the temperature maxima above Greenland and in the Irminger Sea by as little as 95 years. Thus abundant brine formation, which was induced by seasonal freezing of large parts of the northwestern Atlantic, may have finally entrained a current of warm surface water from the subtropics and thereby triggered the sudden reactivation of the THC. In summary, the internal dynamics of the east Greenland ice sheet may have formed the ultimate pacemaker of D-O cycles
    • 

    corecore