118 research outputs found

    Northwest Pacific ice-rafted debris at 38°N reveals episodic ice-sheet change in late Quaternary Northeast Siberia

    Get PDF
    The ice-rafted-debris (IRD) record of the open Northwest Pacific points towards the existence of substantial glacial ice on the Northeast Siberian coast during the late Quaternary. However, the scale and timing of glaciation and de-glaciation remains controversial due to the dearth of both onshore and offshore records. Existing IRD data suggests at least one event of dynamic and abrupt change during mid-late Marine Isotope Stage (MIS 3) which mimics the massive collapse of the Laurentide ice sheet during Heinrich Events. It is uncertain whether other events of this magnitude occurred during the late Quaternary. Here we present a ∼160,000 yr IRD series, planktic foraminiferal counts and an age model, derived from a benthic δ18O curve, radiocarbon dates and tephrochronology, from core ODP 1207A (37.79°N, 162.75°E), revealing the presence of low but episodic flux of IRD. We conclude that glacial Northwest Pacific icebergs spread further south than previously thought, with icebergs emanating from Northeast Siberia being transported to the transition region between the subpolar and subtropical waters, south of the subarctic front during at least the Quaternary's last two glacial periods. The episodic nature of the 1207A IRD record during the last glacial, combined with coupled climate-iceberg modelling, suggests occasional times of much enhanced ice flux from the Kamchatka-Koryak coast, with other potential sources on the Sea of Okhotsk coast. These findings support the hypothesis of a variable but extensive ice mass during the last glacial over Northeast Siberia, particularly early in the last glacial period, behaving independently of North American and Eurasian ice masses. In strong contrast, IRD was absent during much of the penultimate glacial Marine Isotope Stage (MIS) 6 suggesting the possibility of very different Northeast Siberian ice coverage between the last two glacial periods

    TephraKam: geochemical database of glass compositions in tephra and welded tuffs from the Kamchatka volcanic arc (northwestern Pacific)

    Get PDF
    Tephra layers produced by volcanic eruptions are widely used for correlation and dating of various deposits and landforms, for synchronization of disparate paleoenvironmental archives, and for reconstruction of magma origin. Here we present our original database TephraKam, which includes chemical compositions of volcanic glass in tephra and welded tuffs from the Kamchatka volcanic arc. The database contains 7049 major element analyses obtained by electron microprobe and 738 trace element analyses obtained by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) on 487 samples collected in proximity of their volcanic sources in all volcanic zones in Kamchatka. The samples characterize about 300 explosive eruptions, which occurred in Kamchatka from the Pliocene until historic times. Precise or estimated ages for all samples are based on published 39Ar/40Ar dates of rocks and 14C dates of host sediments, statistical age modelling and geologic relationships with dated units. All data in TephraKam is supported by information about source volcanoes and analytical details. Using the data, we present an overview of geochemical variations of Kamchatka volcanic glasses and discuss application of this data for precise identification of tephra layers, their source volcanoes, temporal and spatial geochemical variations of pyroclastic rocks in Kamchatka

    W- rich mixed oxide solid solutions under pressure

    Get PDF
    We report high-pressure synchrotron X-ray powder diffraction data for the W-rich cubic ZrW[2-x]Mo[x]O[8] (x=0.4) up to 10 GPa with open decompression. This study shows that cubic- ZrW[1.6]Mo[0.4]O[8] transforms to orthorhombic phase at the 5.04 GPa. Pressure-induced reversable amorphization of material was observed at 8.13 GPa. The obtained data suggest that W-rich cubic ZrW[2-x]Mo[x]O[8] (x=0.4) solid solutions are more attractive for creating products working under extreme conditions and mechanic stress
    corecore