73 research outputs found

    On the extra phase correction to the semiclassical spin coherent-state propagator

    Get PDF
    The problem of an origin of the Solary-Kochetov extra-phase contribution to the naive semiclassical form of a generalized phase-space propagator is addressed with the special reference to the su(2) spin case which is the most important in applications. While the extra-phase correction to a flat phase-space propagator can straightforwardly be shown to appear as a difference between the principal and the Weyl symbols of a Hamiltonian in the next-to-leading order expansion in the semiclassical parameter, the same statement for the semiclassical spin coherent-state propagator holds provided the Holstein-Primakoff representation of the su(2) algebra generators is employed.Comment: 19 pages, no figures; a more general treatment is presented, some references are added, title is slightly changed; submitted to JM

    Oscillatory dynamics and non-markovian memory in dissipative quantum systems

    Full text link
    The nonequilibrium dynamics of a small quantum system coupled to a dissipative environment is studied. We show that (1) the oscillatory dynamics close to a coherent-to-incoherent transition is surprisingly different from the one of the classical damped harmonic oscillator and that (2) non-markovian memory plays a prominent role in the time evolution after a quantum quench.Comment: 5 pages, 3 figure

    Photonic Kondo-like model

    Get PDF

    Photonic Kondo-like model

    Get PDF

    Scattering of massless particles in one-dimensional chiral channel

    Full text link
    We present a general formalism describing a propagation of an arbitrary multiparticle wave packet in a one-dimensional multimode chiral channel coupled to an ensemble of emitters which are distributed at arbitrary positions. The formalism is based on a direct and exact resummation of diagrammatic series for the multiparticle scattering matrix. It is complimentary to the Bethe Ansatz and to approaches based on equations of motion, and it reveals a simple and transparent structure of scattering states. In particular, we demonstrate how this formalism works on various examples, including scattering of one- and two-photon states off two- and three-level emitters, off an array of emitters as well as scattering of coherent light. We argue that this formalism can be constructively used for study of scattering of an arbitrary initial photonic state off emitters with arbitrary degree of complexity.Comment: 25 pages, 5 figure

    Quantum dot coupled to topological insulators: The role of edge states

    Get PDF
    We investigate a system consisting of one or two topological-insulator leads which are tunnel coupled to a single dot level. The leads are described by the one-dimensional Su-Schrieffer-Heeger model. We show that (topological) edge states cause characteristic features in the dot spectral function, the dot occupation, and the finite-bias current across the dot. As the kinetic energy is quenched in the dot region, local two-particle interactions are of particular relevance there. This motivates us to test whether the aforementioned edge-state features are robust against such interactions; we report here that they are either robust or even enhanced. We conclude that the characteristic features can be used to determine if the leads are in their topologically nontrivial or trivial phase
    • …
    corecore