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Persistent currents in multicomponent Tomonaga-Luttinger liquid: application to

mesoscopic semiconductor ring with spin-orbit interaction
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Chemin du Musée 3, CH-1700 Fribourg, Switzerland

We study persistent currents in semiconductor ballistic rings with spin-orbit Rashba interaction.
We use as a working model the multicomponent Tomonaga-Luttinger liquid which arises due to
the nonparabolic dispersion relations of electrons in the rings with rather strong spin-orbit cou-
pling. This approach predicts some new characteristic features of persistent currents, which may be
observed in experimental studies of semiconductor ballistic rings.

PACS numbers: 73.23.Ra, 73.23.Ad, 71.70.Ej

I. INTRODUCTION

It has been known for a long time that due to the
conservation of the electron phase coherence an isolated
metallic mesoscopic ring threaded by a magnetic flux may
carry a persistent current1. This quantity, which equals
to the derivative of free energy with respect to the flux,
has been theoretically shown to exist in both ballistic
rings2 and rings with disorder3. The effect of impuri-
ties on persistent currents has been studied later on in a
number of theoretical works4,5,6,7,8,9.

The experimentally measured currents10,11,12 in dif-
fusive metallic rings demonstrated a disagreement with
the theoretically predicted values. This observation
has initiated an intensive debate. Several authors have
studied the effect of Coulomb interaction on persistent
current6,13,14,15,16,17,18,19,20, either without or with dis-
order. There is still no total consensus on the simul-
taneous effect of impurities and electron-electron (e-e)
interactions on persistent current.

On the other hand, the experimental results for bal-
listic GaAs/GaAlAs-based rings21 were found to be in a
good agreement with the theoretical predictions.

For one-dimensional (1D) systems there is a variety of
powerful methods which allow to treat e-e interactions.
For instance, the persistent current in the Hubbard ring
with a flux and Coulomb repulsion can be found from the
Bethe Ansatz (BA) solution13,22. The effects of disorder
in the Hubbard model have been studied in Ref. 18 by
means of the bosonization technique.

It is generally believed that the low-energy physics of
1D systems can be often described using the Tomonaga-
Luttinger (TL) liquid concept23 (see Refs. 24,25 for the
review). In particular, quantum wires made of semicon-
ductor heterostructures have been found to demonstrate
the TL features26. Therefore, the TL model appears to
be a reasonable approximation for accounting for differ-
ent effects in the 1D semiconductor heterostructures.

In Ref. 27 the persistent current has been studied
within the TL model, and the particular emphasis has
been made on the effects of electron number parity. The
crucial significance of parity effects for the persistent cur-

rent in 1D systems has been recognized quite a long time
ago1,4. In particular, it has been noticed28 that for a sys-
tem of Ne interacting spinless fermions in the TL phase
the sign of a current, which reflects the properties of the
ground state, is diamagnetic for odd Ne, while it is para-
magnetic for even Ne.

For the case of spinful interacting fermions the na-
ture of the ground state may change depending both on
the strength of Coulomb repulsion and on the relative
parity of spin-up and spin-down electron numbers. For
instance13, in the Hubbard rings with an odd number of
electrons Ne = Ne↑ + Ne↓ the current is paramagnetic
around Φ = 0, and its period is half the flux quantum
Φ0 ≡ hc/e. Meanwhile, in the Hubbard rings with even
Ne and low filling the current is diamagnetic near zero
flux, whereas at densities close to half-filling the currents
may become paramagnetic.

In the modern expanding field of spintronics the main
research interest focuses basically on spin injection and
spin detection in solid-state devices29,30. Semiconductor
InAlAs/InGaAs-based heterostructures provide promis-
ing opportunities for spin manipulation, because in such
materials spin-orbit (SO) splitting of Rashba type30,31 is
rather large, and this allows for especially strong coupling
of spin polarization and electric field. A naturally aris-
ing problem is to understand the effect of SO coupling
on such a ground-state property as persistent current in
a mesoscopic ring made of semiconductor material. In-
deed, the issue of SO effects in noninteracting 1D ballistic
rings has been already addressed in Refs. 32,33,34. Sur-
prisingly, the exact BA solution which takes into account
the SO effects in the appropriately modified Hubbard
model is also available35. Persistent currents in this sys-
tem have been analyzed on the ground of the BA solution
in Ref. 36. The interplay of Coulomb repulsion and the
SO coupling in combination with the parity effects leads
to the remarkable features in the nature of current: al-
though the SO interaction does not produce any effect in
the case of a ring with the odd number Ne, the result for
even-Ne rings differs from that of the standard Hubbard
model without SO interaction.

In the regime of low electron densities the 1D sys-
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tem of interacting electrons with SO coupling can also
be described in terms of a multicomponent TL model.
The persistent current in the SO-splitted TL liguid has
been studied in Ref. 37 using the approach developed in
Refs. 27,36.

We have been discussing so far the effects of SO cou-
pling which are caused by the relative horizontal shift
of spin-up and spin-down parabolic dispersion curves. In
such a situation the densities of states near the Fermi en-
ergy are the same in each branch, and therefore they can
be characterized by a unique value of the Fermi velocity.
However, it has been recently shown38,39,40 that the pre-
sence of strong SO interaction can qualitatively change
the band structure of a 2D electron gas confined to the
1D geometry. This can be achieved by applying both a
specific lateral confining potential in the plane of a 2D
electron gas and the Rashba potential perpendicular to
this plane. The single particle electron spectrum of thus
effectively created ballistic quantum (quasi)-1D wire re-
veals quite a strong deviation from parabolic shape. The
extent of this deviation depends significantly on the re-
lation between the strength of confining potential and
the Rashba SO coupling constant. In order to capture
the physics of the effective 1D wire with nonparabolic,
spin-splitted spectrum it has been recently suggested to
consider a modified TL model characterized by two dif-
ferent Fermi velocities41 v1 6= v2. Without loss of gener-
ality, this model may be regarded as a multicomponent
TL liquid introduced by Penc and Sólyom42.

The goal of this paper is to study the persistent cur-
rents in the class of the multicomponent TL liquids de-
scribed above, emphasizing the features which can be po-
tentially observed in experiment. In Sec. II we review the
derivation of the dispersion relations in the ring geometry
performed in Refs. 34,43,44, presenting it in an optimized
form. In particular, we consider other profiles of the con-
fining potential which allow to treat the radial part of the
wavefuction without any further approximation. We also
estimate the parameter η = (v1 − v2)/(v1 + v2), which
measures the asymmetry (nonparabolicity) of the single
particle spectrum for the recently fabricated semiconduc-
tor ring with Rashba SO coupling45. In Sec. III we out-
line the basic steps of bosonization procedure and thus
introduce our notations. We also quote the main results
concerning the multicomponent TL liquids. We appre-
ciate the importance of the zero-mode contributions to
a persistent current and therefore take a special care of
the zero-mode part of the bosonized TL Hamiltonian.
In Secs. IV and V we consider persistent currents in the
cases of canonical and grand canonical ensembles, respec-
tively. The important issue in these sections is the par-
ity dependence of persistent currents, which in bosoniza-
tion picture stems from the topological constraints (selec-
tion rules) imposed onto the topological excitations (zero
modes). We observe the novel features of persistent cur-
rents caused by the nonzero value of η. The discussion
of the results obtained is presented in Sec. VI.

II. MESOSCOPIC RINGS WITH RASHBA

INTERACTION: DISPERSION RELATIONS

The Hamiltonian for a quasi-1D ballistic ring with the
Rashba SO coupling in polar coordinates34,43,44 is a sum
of the radial, angular and spin-orbit coupling terms

Hrad
0 = − ~

2

2m

(
∂2

∂r2
+

1

r

∂

∂r

)
+ V (r), (1)

Hang
0 = − ~

2

2mr2

(
−i ∂
∂ϕ

− qΦ

)2

, (2)

HSO = αR
σr

r

(
−i ∂
∂ϕ

− qΦ

)
+ iαRσϕ

∂

∂r
, (3)

where qΦ = Φ/Φ0, m is an effective (band) mass of
electron, αR is the Rashba coupling constant, σr =
cosϕσ1 + sinϕσ2, σϕ = − sinϕσ1 + cosϕσ2, and the
Zeeman interaction is neglected. The confining potential
V (r) can be modeled by a singular oscillator potential46

V (r) =
mω2

2

(
r − a2

r

)2

, (4)

or by a hard-wall potential

V (r) =
~

2

8mr2
for

(
a− d

2

)
< r <

(
a+

d

2

)
,

V (r) = ∞ elsewhere. (5)

In these expressions a can be associated with a mean
radius of the ring, and lω ≡

√
~/mω or d – with its mean

width.
We introduce dimensionless parameters λ = a2/l2ω,

y = r/lω, α0 = αRma/~
2, h = H/~ω, and rewrite the in-

tegrable hrad
0 and nonintegrable parts hϕ,σ ≡ hang

0 +hSO

in the new notations:

hrad
0 = −1

2

(
∂2

∂y2
+

1

y

∂

∂y

)
+ v(y), (6)

hϕ,σ =
q2

2y2
+
α0√
λ

(
σr
q

y
+ iσϕ

∂

∂y

)
, (7)

where q = −i∂ϕ − qΦ.
We can remove the dependence on ϕ in (7) (which

enters through σr and σϕ) by a gauge transformation

hϕ,σ → h′ϕ,σ = eiϕσ3/2hϕ,σe
−iϕσ3/2, (8)

and therefore obtain

h′ϕ,σ =
1

2y2

(
q − 1

2
σ3

)2

+
α0√
λ

(
σ1
q

y
+ iσ2

(
1

2y
+

∂

∂y

))
. (9)

Note that due to the transformation (8) the periodic
boundary conditions (at zero flux) for an angular wave-
function have changed to the anti-periodic ones.



3

The radial eigenfunctions

Rn(y) =

[
Γ(n+ 1)

Γ(n+ λ+ 1)

]1/2 √
2yλe−y2/2Lλ

n(y2), (10)

where Lλ
n is the generalized Laguerre polynomial, and

Rn(y) =

√
2

y
sin

[
π(n+ 1)(y −

√
λ+ 1/2)

]
,

for
√
λ− 1/2 < y <

√
λ+ 1/2,

Rn(y) = 0 elsewhere, (11)

correspond to the confining potentials (4) and (5), respec-
tively. In both cases they are labelled by n = 0, 1, . . . and
normalized according to

∫ ∞

0

yRm(y)Rn(y)dy = δmn. (12)

We would like to emphasize that in our consideration we
do not make use of the approximation λ ≫ 1, which is
usually employed when the confining potential is mod-
eled by a regular harmonic oscillator34,44. This becomes
an important issue when the mean radius of the ring is
comparable to its mean width.

We can find the spectra of (6)

εrad
0 = 2n+ 1 and εrad

0 =
π2(n+ 1)2

2
(13)

for a singular oscillator and a hard-wall potentials, re-
spectively, and the matrix elements h′mn of (9) in the
basis of Rn(y):

h′mn =
bmn

2

(
q − 1

2
σ3

)2

+
α0√
λ

(σ1amnq + iσ2cmn) .

(14)
Here we denote

amn =

∫ ∞

0

yRm(y)

(
1

y

)
Rn(y)dy, (15)

bmn =

∫ ∞

0

yRm(y)

(
1

y2

)
Rn(y)dy, (16)

cmn =

∫ ∞

0

yRm(y)

(
1

2y
+

∂

∂y

)
Rn(y)dy. (17)

It is remarkable44 that the diagonal elements cnn identi-
cally vanish because they correspond to the momentum
operator in polar coordinates.

Ideally, we have to diagonalize h′mn in the infinite basis
N → ∞ (0 ≤ m,n ≤ N − 1). Practically, it can be only
done approximately at some large but finite value of N .
After having diagonalized h′mn, we can perform another
– inverse of (8) – gauge transformation

h′diag → h′′diag = Sh′diagS
−1, S = e−iϕσ3/2 ⊗ 1N (18)

in order to restore the periodic boundary conditions for
an angular wavefunction. The formal expression (18) is

equivalent to saying that the spin-up ε′n↑(q) and spin-

down ε′n↓(q) dispersion curves in every band n must be

shifted in q by −1/2 and +1/2, respectively.
To describe the main qualitative effects of spin-orbit

coupling it is sufficient to consider the one-band (N = 1)
and two-band (N = 2) approximations only. We calcu-
late the matrix elements (15)-(17) in the singular oscilla-
tor basis (10), as well as in the hard-wall potential basis
(11). In the former case we have

a00 = g(λ), a11 =
λ+ 3

4

λ+ 1
g(λ), (19)

a01 = a10 =
1

2
√
λ+ 1

g(λ), (20)

b00 = b11 =
1

λ
, b01 = b10 =

1

λ
√
λ+ 1

, (21)

c01 = −c10 = − λ+ 1
2√

λ+ 1
g(λ), (22)

where g(λ) is expressed through the Γ-function

g(λ) =
Γ(λ+ 1

2 )

Γ(λ+ 1)
. (23)

Respectively, in the latter case we have c01 = −c10 =
−8/3 and

(a, b)nn =
λ−k/2

2π

∫ π

−π

1 + (−1)n cos(n+ 1)y′
(
1 + y′

2π
√

λ

)k
dy′, (24)

(a, b)01 = (a, b)10

= −λ
−k/2

π

∫ π

−π

sin y′ cos y′

2(
1 + y′

2π
√

λ

)k
dy′, (25)

where k = 1, 2 correspond to a and b, respectively. It is
easy to compute the integrals in (24) and (25) numeri-
cally.

In the one-band approximation we find the dispersion
relations

h′′00 = ε±(q) =
b00
2

(q − qΦ ∓ qR)2, (26)

where qR = 1
2

(√
1 + 4α2

0a
2
00/λb

2
00 − 1

)
is the Rashba an-

gular momentum. The upper sign corresponds to the
spin-up branch and the lower sign – to the spin-down
branch. In this approximation the effect of spin-orbit
coupling shows up in the relative horizontal shift by 2qR
of the two parabolic dispersion curves.

In the two-band approximation the analytical results
are also available: we can find the solutions of the forth-
order characteristic equation for 4 × 4-matrix (14) and
then shift them according to (18). However, it is easy
to find the dispersion relations in this case numerically.
We use the following estimates for the parameters of
the ballistic ring which has been studied in the recent
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FIG. 1: The lowest radial band in the two-band approxima-
tion (α0 = 3.0). Solid thick line: hard-wall potential. Dashed

thick line: singular oscillator potential.
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FIG. 2: The lowest radial band in the hard-wall potential
(α0 = 3.0). Solid thick line: two-band approximation. Solid

thin line: one-band approximation.

experiment45: a = 350nm, d = 180nm, mean free path
≃ 1µm, m ≈ 0.042me. The Rashba coupling con-
stant αR for the heterostructure used in this experiment
was ≈ 0.8 · 10−11eVm. In other heterostructures it can
reach even larger values (see, e.g. Ref. 47) in the range
αR ≈ 1 ÷ 6 · 10−11eVm. With these parameters we can
find λ = 3.78 and α0 in the range 2 ÷ 12, as well as the
matrix elements

a00 = 0.50(0.52), a11 = 0.47(0.52), a01 = 0.11(0.05),

b00 = 0.26(0.27), b11 = 0.26(0.28), b01 = 0.12(0.05),

and c01 = −0.97(−2.67) in the singular oscillator (hard-
wall) potential basis. The results of the band structure
calculations are presented in Figs. 1-4. In each figure
the level εrad

0 (n = 0) is set to zero. We plot the lowest
radial band SO-splitted into the two subbands (spin-up
and spin-down). In Fig. 1 we compare the results of the
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q
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30

40

ε

FIG. 3: The lowest radial band in the singular oscillator po-
tential (α0 = 3.0). Dashed thick line: two-band approxima-
tion. Dashed thin line: one-band approximation.
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FIG. 4: The lowest radial band in the hard-wall potential
(α0 = 6.0). Solid thick line: two-band approximation. Solid

thin line: one-band approximation.

two-band approximation in the hard-wall and the sin-
gular oscillator potentials for the value of the Rashba
constant α0 = 3.0. In Fig. 2 the results of the two-band
and the one-band approximations in the hard-wall po-
tential are presented at α0 = 3.0. In Fig. 3 the results
of the two-band and the one-band approximations in the
singular oscillator potential are presented at α0 = 3.0.
In Fig. 4 we compare the results of the two-band and
the one-band approximations in the hard-wall potential
at α0 = 6.0. So, we can see that the dispersion rela-
tions calculated in the ring geometry appear to be sim-
ilar to the electron spectra in the wire geometry39,40,41.
The common qualitative feature of the wire and the ring
dispersion curves beyond the one-band approximation is
their bending, i.e the deviation from the parabolic shape.
It emerges already in the two-band approximation, and
including higher bands into consideration would not qual-
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itatively change the picture. The immediate consequence
of the spectrum bending is the difference in Fermi veloc-
ities

vright
F↑ 6= −vleft

F↑ , vright
F↓ 6= −vleft

F↓ . (27)

However, due to the time-reversal symmetry expressed in
the form ε↑(q) = ε↓(−q) (at zero flux) we still have

vright
F↑ = −vleft

F↓ , vright
F↓ = −vleft

F↑ . (28)

Therefore, we have two distinct (in the absolute value)

Fermi velocities v1 = vright
F↑ and v2 = vright

F↓ . We intro-

duce the notations v0 = (v1 +v2)/2, δv = (v1−v2)/2 and
η = δv/v0. For α0 = 6.0 we make an estimate η ∼ 0.27
in the hard-wall confining potential at the Fermi energy
∼ 1.48 measured from εrad

0 (n = 0).
Recently, there have been studied the effects of non-

zero η on two-point41 and four-point48 correlation func-
tions of the TL liquid. In the next sections we would like
to consider how the spectrum bending discussed above
modifies the persistent currents.

III. BOSONIZATION OF THE

MULTICOMPONENT TOMONAGA-LUTTINGER

LIQUID

In this section we present the basic steps of bosoniza-
tion procedure and the main issues of the TL liquid the-
ory. In what follows we will use the notations

k =
2πq

L
and x =

Lϕ

2π

instead of q and ϕ in order to employ the standard
bosonization formulas and to have a transparent relation
between the description of the ring and the wire geome-
tries.

Linearization of the spectrum near the Fermi energy
yields the second-quantized Hamiltonian

H = −iv1
∫
dx

(
ψ†

R↑∂xψR↑ − ψ†
L↓∂xψL↓

)

−iv2
∫
dx

(
ψ†

R↓∂xψR↓ − ψ†
L↑∂xψL↑

)
, (29)

where ψRs(x) and ψLs(x) are the right and the left com-
ponents of the fermionic field

ψs(x) = ψRs(x) + ψLs(x), s =↑ (+), ↓ (−). (30)

The standard bosonization Ansatz reads49

ψηs(x) =
Fηs√
L
eiη( 2π

L
Nηs−kηs)x exp

[
iη
√

2πφηs(x)
]
, (31)

where η = R(+), L(−), Nηs are the topological excita-
tions (zero modes) and Fηs are the Klein factors. One
can employ the mode expansion of the bosonic fields

φηs(x) =
i√
L

∑

k>0

1√
k
e−αk/2

[
eiηkxbkηs − e−iηkxb†kηs

]

in terms of bosonic mode excitations b†kηs(bkηs), α → 0
being a small cut-off parameter. We have also introduced
the effects of a flux and a relative shift of the spin-up and
spin-down dispersion curves by including the boundary
term

kηs =
k1 + k2

2
+ sη

k1 − k2

2
+ ηkΦ (32)

into the bosonization formula (31). Here k1 and k2 are
the linearization points for the right spin-up and the right
spin-down branches, respectively.

Bosonizing the Hamiltonian (29), we obtain

H =
∑

k>0

k
∑

ηs

|vηs|b†kηsbkηs +
π

L

∑

ηs

|vηs|Ñηs(Ñηs + 1),

(33)
where |vR↑| = |vL↓| ≡ v1, |vR↓| = |vL↑| ≡ v2, and

Ñηs = Nηs −
L

2π
kηs. (34)

The next step is to take into account the standard
g4c(s) and g2c(s) interactions (forward scattering) which

specify the Tomonaga-Luttinger model24. In our case
we have the two-component TL liquid, and its continu-
ous (k 6= 0) part can be diagonalized by the canonical
transformation41 A = (Aij)

(bkR↑, b
†
kL↑, bkR↓, b

†
kL↓)

T = A(dk1+, d
†
k2+, dk1−, d

†
k2−)T ,

where Aij = Aij(g4c(s), g2c(s); δv). Thus, we obtain

H =
∑

k>0

k
∑

ν=±
vν

(
d†k1νdk1ν + d†k2νdk2ν

)

+
π

4L

[
vcKcJ̃

2
c + vsKsJ̃

2
s +

vc

Kc
Ñ2

c +
vs

Ks
Ñ2

s

+ 2δv
(
J̃cÑs + J̃sÑc

)
+ 4v0Ñc + 4δvJ̃s

]
, (35)

where v± is expressed48 through the charge (spin) velo-
city vc(s), charge (spin) stiffness Kc(s) and δv.

We note that the zero-mode part in (35) (the second
and the third lines) cannot be fully diagonalized by the
continuous canonical transformation A, since the charge
and spin current excitations

Jc = NR↑ −NL↑ +NR↓ −NL↓, (36)

Js = NR↑ −NL↑ −NR↓ +NL↓, (37)

as well as the charge and spin number excitations

Nc = NR↑ +NL↑ +NR↓ +NL↓, (38)

Ns = NR↑ +NL↑ −NR↓ −NL↓ (39)

take integer values, and therefore they can be only trans-
formed by a modular transformation which maps a grid
onto itself. For this reason the grand partition function
Ξ0 corresponding to zero modes cannot be expressed in
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terms of the standard Jacobian theta functions50 as it
occurs in the spinless case27 and even in the spinful case
with spin-orbit coupling37. It is exactly the spectrum
asymmetry parameter δv that violates the factorization
of Ξ0 into different Jc, Js, Nc, Ns sectors. In the canonical
ensemble the factorization of the partition function Z0 is
still possible, but the terms proportional to δv would also
cause some corrections.

In (35) we have also introduced

J̃c = Jc − 4qΦ, J̃s = Js − 4δq, (40)

Ñc = Nc − 4q0, Ñs = Ns, (41)

with

q0 =
L(k1 + k2)

4π
∼ qF, δq =

L(k1 − k2)

4π
∼ qR. (42)

The similarity sign turns into the equality sign for the
one-band approximation, i.e. when we deal with the
parabolic dispersion relations. The first expression in
(40) also shows that the entire dependence on the mag-
netic flux is contained in the zero-mode part of the Hamil-
tonian (35), and therefore it is sufficient to calculate
Z0(Ξ0) in order to find the persistent currents in the
(grand) canonical ensemble.

IV. PERSISTENT CURRENTS: FIXED

NUMBER OF ELECTRONS

In case of fixed number of electrons persistent current
equals

I(Φ) = − d

dΦ
∆F (Φ), (43)

where ∆F (Φ) is an oscillating part of the free energy.
In the following we adopt the units in which Φ0 = 1

and introduce the characteristic scale for a current I0 ≡
4πv0/L.

In the canonical ensemble the charge and spin number
excitations are forbidden: Nc = Ns ≡ 0. Therefore,
different topological sectors disentangle, and we find

∆F (Φ) = −T ln
∑

{Jc,Js}
e−H0(Φ)/T (44)

summing over {Jc, Js} sectors. We have introduced the
Hamiltonian

H0(Φ) =
π

4L

[
vcKc (Jc − 4qΦ)

2
+ vsKs

(
Js − 4qeff

R

)2
]

(45)
along with the effective Rashba angular momentum [cf.
(42)]

qeff
R = δq +

2q0 − 1

2vsKs
δv. (46)

The curly brackets in {Jc, Js} mean that the certain
topological constraints are imposed onto the pair of val-
ues Jc, Js. These constraints, or selection rules, are
different for different parities of the electron number.
This gives rise to the parity dependence of persistent
currents1,4. Before discussing it in further details, we are
already able to state that the whole effect of the spec-
trum asymmetry in the case of fixed number of electrons
is the renormalization of the Rashba angular momentum
(46).

The topological constraints in question have been de-
rived in Ref. 27 for spinless TL liquid, and the case of
the spin- 1

2 TL liquid has been considered later on by dif-

ferent authors37,51,52. In what follows we will use the
formulation of Ref. 52.

A. Ne = 4N0 + 2 and Ne = 4N0

When the number of electrons in the ring equals to
Ne = 4N0 + 2, we have the following possible combina-
tions of {Jc, Js}:

{4nc, 4ns}, {4nc + 2, 4ns + 2}. (47)

The summations over nc and ns are unconstrained and
run from −∞ to ∞. Using the properties of the Jaco-
bian theta functions (Appendix A), we can find that the
persistent current I(1)(qΦ) equals to

πT
θ′3(πqΦ, γc)θ3(πq

eff
R , γs) + θ′4(πqΦ, γc)θ4(πq

eff
R , γs)

θ3(πqΦ, γc)θ3(πq
eff
R , γs) + θ4(πqΦ, γc)θ4(πq

eff
R , γs)

,

(48)
where

γc(s) = e−πLT/vc(s)Kc(s) . (49)

In the case δv = 0 we find the agreement between (48)
and the respective expression of Ref. 37. Considering
further the noninteracting limit

γc = γs = γ ≡ e−πLT/v0 , (50)

we can simplify (48) down to

I(1)(qΦ) =

∞∑

n=1

4πT (−1)n

sinh(2π2nT/I0)
cos(2πnqR) sin(2πnqΦ),

(51)
and recover the result of Ref. 33.

For Ne = 4N0 we can find the persistent current by
the mere shift of the argument

I(2)(qΦ) = I(1)(qΦ + 1/2), (52)

which is valid in both noninteracting33 and interacting51

considerations.
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B. Ne = 4N0 + 1 and Ne = 4N0 + 3

When Ne = 4N0 + 1 or Ne = 4N0 + 3, i.e. for the
odd electron number, we have to sum in (44) over the
following combinations of {Jc, Js}:

{4nc + 1, 4ns + 1}, {4nc + 1, 4ns + 3},
{4nc + 3, 4ns + 1}, {4nc + 3, 4ns + 3}. (53)

We can find then

I(3)(qΦ) =

∞∑

n=1

4πT

sinh(πnLT/vcKc)
sin(4πnqΦ). (54)

It is remarkable that the result does not depend on qeff
R ,

and therefore the spin-orbit coupling does not show up
in this case at all. In the noninteracting limit vc = v0
and Kc = 1, and we are again in agreement with Ref. 33.

From this perspective the formula (13) of Ref. 37 seems
to be incorrect. The probable source of error might be in
the following: even though all possible topological con-
figurations of the ground state were correctly established
(equivalently to (53)), not all of them were included in the
computation of the free energy. Therefore, the statement
of Ref. 37 that for finite temperatures there might occur
the spontaneous currents (at zero flux) is misleading. In
contrast, according to (54) we always have I(3)(0) = 0.

V. PERSISTENT CURRENTS: FIXED

CHEMICAL POTENTIAL

Let us now consider the case when the mesoscopic ring
is weakly coupled to the reservoir with chemical potential
µ. In this situation the charge and spin number excita-
tions are allowed. For this reason the terms mixing J
and N sectors in (35) do not vanish, and therefore the
consequences of the spectrum asymmetry (δv 6= 0) may
become more diverse.

In order to find the persistent current

I(Φ, µ) = − d

dΦ
∆Ω(Φ, µ), (55)

we need to calculate the oscillating part of the thermo-
dynamic potential

∆Ω(Φ, µ) = −T ln
∑

{Jc,Nc,Js,Ns}
e−H0(Φ,µ)/T , (56)

where the curly brackets in {Jc, Nc, Js, Ns} again mean
the topological constraints, and

H0(Φ, µ) =
π

4L

[
vcKcJ̃

2
c + vsKsJ̃

2
s +

vc

Kc
Ñ2

c +
vs

Ks
Ñ2

s

+ 2δv
(
J̃cÑs + J̃sÑc

)
+ 4v0Ñc + 4δvJ̃s

]
− µNc. (57)

Due to δv 6= 0 different topological J and N sectors re-
main entangled. We can rewrite 16H0(Φ, µ)/I0 (up to
some irrelevant additive constant term) in the form

λc(Jc − zΦ)2 + 2η(Jc − zΦ)(Ns − zB) + νs(Ns − zB)2

+ λs(Js − zR)2 + 2η(Js − zR)(Nc − zµ) + νc(Nc − zµ)2

with η and I0 introduced in Secs. II and IV, respectively;

λc(s) =
vc(s)Kc(s)

v0
, νc(s) =

vc(s)

Kc(s)v0
, (58)

and

zΦ = 4qΦ, zR = 4

(
δq − η(fµ + νc)

2(νcλs − η2)

)
, (59)

zB = 0, zµ = 4

(
q0 +

fµλs + η2

2(νcλs − η2)

)
. (60)

In the above expressions fµ = µπL
v0

− 1 measures the
difference between the chemical potential and the Fermi
energy, and zB is some argument, which would have been
non-zero, had we included the Zeeman interaction.

We remark that the charging energy Ec and the gate
voltage Vg are not explicitly included in (57). We infer
that they can be effectively taken into account by redefin-
ing λc → λc + 16Ec/I0 and µ→ µ+ eVg, respectively.

In Appendix B we introduce auxiliary functions
G(zΦ, zB, zR, zµ) and G′(zΦ, zB, zR, zµ), which allow to

conveniently express Ξ(Φ, µ) = e−∆Ω(Φ,µ)/T and I(Φ, µ)
for different electron numbers Ne in the ground state (at
T = 0 and Φ = 0). In the noninteracting limit and/or
in the limit η = 0 the functions G and G′ can be sim-
plified and rewritten in terms of the standard Jacobian
theta functions (due to the relations quoted in Appendix
A). In general, they are expressed in terms of the Siegel
theta functions53 (i.e. theta functions of higher degree),
and therefore it is not straightforward to establish their
asymptotics. However, for small enough temperatures
the functions G and G′ can be easily computed numeri-
cally.

A. Ne = 4N0 + 2 and Ne = 4N0 in the ground state

The selection rules formulated in Ref. 52 are also ap-
plicable in our consideration. Thus, for Ne = 4N0 + 2
electrons in the ground state we have to choose those J ’s
and N ’s which satisfy the following requirements:

1) Jc and Nc are either simultaneously even or simul-

taneously odd. The same holds for Js and Ns;

2) Jc ± Js +Nc ±Ns takes values . . . ,−4, 0, 4, . . .

In fact, this concisely formulated prescription as-
sumes the summation over 16 different combinations of
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{Jc, Nc, Js, Ns} (see Appendix B). Having properly per-
formed it, we obtain

Ξ1(Φ, µ) = G(zΦ, zB, zR, zµ), (61)

Ξ′
1(Φ, µ) = G′(zΦ, zB, zR, zµ), (62)

and

I(1)(Φ, µ) = 2πT
Ξ′

1(Φ, µ)

Ξ1(Φ, µ)
. (63)

In the noninteracting limit λc(s) = νc(s) = 1 the per-
sistent current (63) equals to

4πT

∞∑

n=1

(−1)n

[
sin πn

2 z
′
Φ cos πn

2 z
′
R

sinh 4Tπ2n
I0(1+η)

+
sin πn

2 z
′
B cos πn

2 z
′
µ

sinh 4Tπ2n
I0(1−η)

]
,

(64)
where

z′Φ = zΦ + zB, z′R = zR + zµ, (65)

z′B = zΦ − zB, z′µ = zR − zµ. (66)

Recalling that zB = 0, we can easily establish the Fourier
coefficients In of the series

(64) =

∞∑

n=1

In sin 2πnqΦ. (67)

In the limit T → 0 we find that In equals to

2I0
(−1)n

πn

[
cos

πn

2
zR cos

πn

2
zµ + η sin

πn

2
zR sin

πn

2
zµ

]
.

So, we obtain additional modulation due to η 6= 0.
In the limit η = 0 the grand partition function (61) is

proportional to

4∑

i=1

θi

(π
2
zΦ, α

4
c

)
θi

(π
2
zR, α

4
s

)
θi

(π
2
zµ, β

4
c

)
θi

(π
2
zB, β

4
s

)

(68)
with

αc(s) = e
− Tπ2

I0λc(s) , βc(s) = e
− T π2

I0νc(s) . (69)

The coefficient of proportionality in (68) is omitted, since
it does not depend on zΦ and therefore becomes unim-
portant for the calculation of the persistent current (63)
in this limit. We note that the expression (68) coincides
with that derived in Ref. 37.

In Figs. 5-7 the persistent currents for the ring with
Ne = 4N0+2 electrons in the ground state (i.e. at T = 0)
are presented at T = 0.005I0. To parameterize the e-e in-
teractions we use the relation between the parameters of
the TL model and the Hubbard model at low densities25:
λc = λs = 1, νc = 1 + u, νs = 1 − u, where u = U/πv0
and U is an interaction parameter in the Hubbard model.
Other parameters are δq = 0.15, q0 = 0.04, fµ = 0.11.

In Figs. 5 and 6 we show how the persistent current in
rings with interacting (u = 0.4) and noninteracting (u =
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FIG. 5: Persistent currents I/I0 vs. flux Φ/Φ0 at u = 0.4 and
different values of η (fixed µ, Ne = 4N0 + 2).
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FIG. 6: Persistent currents I/I0 vs. flux Φ/Φ0 at u = 0.0 and
different values of η (fixed µ, Ne = 4N0 + 2).
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FIG. 7: Persistent currents I/I0 vs. flux Φ/Φ0 at η = 0.3 and
different values of u (fixed µ, Ne = 4N0 + 2).
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0.0) electrons is modified when we vary the spectrum
asymmetry parameter η. One can see that in the first
case increasing η develops a paramagnetic “tooth” near
qΦ = 0, while in the second case altering η changes the
size of the diamagnetic “tooth” near qΦ = 1/2.

The dependence of the persistent current at η = 0.3
on the interaction parameter u is depicted in Fig. 7.

Of course, an alteration of other parameters δq, q0,
fµ may also change the picture of the current, but it is
obvious that the modification due to η is remarkable.

The results for Ne = 4N0 are obtained by the shift in
either zΦ or zµ (see, e.g. Ref. 51):

Ξ2(Φ, µ) = G(zΦ + 2, zB, zR, zµ)

≡ G(zΦ, zB, zR, zµ + 2), (70)

and similarly for I(2)(Φ, µ).

B. Ne = 4N0 +1 and Ne = 4N0 +3 in the ground state

First of all, we would like to remark that the ground
state with the odd electron number (Ne = 4N0 + 1 or
Ne = 4N0 + 3) can be justified only for repulsive in-
teractions at very low temperatures: T ≪ U/L ∼ I0u
(see, e.g., Ref. 51 for the discussion). In this case we can
formulate the selection rules in terms of the function G
and thus obtain the following expression for the grand
partition function:

Ξ3(Φ, µ) = G(zΦ + 1, zB, zR + 1, zµ)

+ G(zΦ + 1, zB, zR − 1, zµ), (71)

Ξ′
3(Φ, µ) = G′(zΦ + 1, zB, zR + 1, zµ)

+ G′(zΦ + 1, zB, zR − 1, zµ). (72)

Respectively,

I(3)(Φ, µ) = 2πT
Ξ′

3(Φ, µ)

Ξ3(Φ, µ)
. (73)

In the noninteracting limit the grand partition function
(71) is proportional to

θ4

(π
2
z′′Φ,γ+

)
θ4

(π
2
z′′B,γ−

)
θ3

(π
2
z′′R,γ+

)
θ3

(π
2
z′′µ,γ−

)

+ θ3

(π
2
z′′Φ,γ+

)
θ3

(π
2
z′′B,γ−

)
θ4

(π
2
z′′R,γ+

)
θ4

(π
2
z′′µ,γ−

)
,

where γ± = e
− 4T π2

I0(1±η) and

z′′Φ,R =
zΦ + zR

2
± zB + zµ

2
, z′′B,µ =

zΦ − zR
2

± zB − zµ

2
.

In the limit η = 0 the grand partition function (71) is
proportional to

θ4

(π
2
zΦ,α

4
c

)
θ3

(π
2
zB,β

4
s

)
θ4

(π
2
zR,α

4
s

)
θ3

(π
2
zµ,β

4
c

)

+ θ3

(π
2
zΦ,α

4
c

)
θ4

(π
2
zB,β

4
s

)
θ3

(π
2
zR,α

4
s

)
θ4

(π
2
zµ,β

4
c

)
.
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FIG. 8: Persistent currents I/I0 vs. flux Φ/Φ0 at u = 0.4 and
different values of η (fixed µ, odd Ne).

If we put in this expression zR = zB = 0 (no spin-orbit
coupling and no magnetic field) and αs = βs, we obtain
the formula equivalent to that derived in Ref. 51:

Ξ3(Φ, µ) ∼
[
θ3

(π
2
zΦ, α

4
c

)
θ4

(π
2
zµ, β

4
c

)

+ θ4

(π
2
zΦ, α

4
c

)
θ3

(π
2
zµ, β

4
c

)]
. (74)

In Fig. 8 we present the persistent currents at u = 0.4
and different values of η, other parameters being the same
as in the even-Ne case. One can observe that in the pres-
ence of η 6= 0 the persistent current is modified consid-
erably. In particular, the effects of SO coupling show
up in the grand canonical ensemble in the ring with odd
number of electrons in the ground state, in contrast to
the ring with fixed odd number of electrons where such
effects are absent [cf. (54)]. Due to η 6= 0 there also
happen transitions between the diamagnetic and param-
agnetic behavior at qΦ = 0,±1/4,±1/2, . . ., and for some
particular value of η (which is close to 0.45 for u = 0.4)
a period-halving occcurs (i.e. the period becomes equal
to qΦ/4).

VI. CONCLUSIONS

We have demonstrated that the account of the higher
radial subbands leads to the modification of the spectrum
of electrons in the ring geometry. In particular, the dis-
persion relations obtained are characterized by two dif-
ferent Fermi velocities. Therefore, in order to describe
the joint effect of the e-e interactions and spin-orbit cou-
pling in ballistic rings it is reasonable to consider the
multicomponent Tomonaga-Luttinger model. The inter-
play between the spin-orbit splitting, nonparabolicity of
the spectrum (η 6= 0), e-e interactions and parity effects
is reflected in the spectral properties of persistent cur-
rents. We have studied this within both canonical and
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grand canonical ensembles. Below we summarize the ba-
sic features of persistent currents caused by the subband
nonparabolicity.

In Sec. IV we have shown that in the rings with the
fixed electron number persistent currents for η 6= 0 do
not change a lot compared to the case η = 0. The reason
for that is the specific selection rule dictated by the par-
ticle conservation in the system. On the other hand, in
the rings with fixed chemical potential we have observed
considerable modifications. Thus, for the even number of
electrons in the ground state we have obtained the gen-
eration of new harmonics and complication of the cur-
rent shape. We have observed how the picture changes
if we vary the effective Coulomb interaction parameter
u, while fixing the effective nonparabolicity parameter
η, and vice versa, and found these changes remarkable.
The modification of the current in the case of odd num-
ber of particles in the ground state appears to be even
more drastic: varying η we can perform the transition
from diamagnetic to paramagnetic behavior at the flux
values Φ = 0,±Φ0/4,±Φ0/2, . . . This makes the current
essentially different from that derived from the parabolic
dispersion relations for the same parity.

We therefore conclude that the nonparabolicity of the
single particle electron spectrum produces a deep entan-
glement of the e-e repulsion and spin-orbit coupling pa-
rameters, and this leads to the new features of the cur-
rent, which can be detected experimentally.

Recently, there has been the certain development in
fabrication of toroidal carbon nanotubes54, and in the
study of persistent currents in such systems55. Since the
electronic spectrum in carbon nanotubes deviates consid-
erably from the parabolic shape, we expect our results to
be applicable in such realization as well, provided the
selection rules are properly modified.
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APPENDIX A: PROPERTIES OF THE

JACOBIAN THETA FUNCTIONS

We use the following definition of the Jacobian theta
functions50

θ1(z, γ) = 2γ1/4
∞∑

n=0

(−1)nγn(n+1) sin(2n+ 1)z,(A1)

θ2(z, γ) = 2γ1/4
∞∑

n=0

γn(n+1) sin(2n+ 1)z, (A2)

θ3(z, γ) = 1 + 2

∞∑

n=1

γn2

cos 2nz, (A3)

θ4(z, γ) = 1 + 2

∞∑

n=1

(−1)nγn2

cos 2nz. (A4)

Note that there exists the alternative definition which
uses the different argument: z → πz.

Functions θ3 and θ4 are periodic under the shift z →
z+π, while θ1 and θ2 change their signs. Note also that

θ3

(
z +

π

2
, γ

)
= θ4(z, γ), θ2

(
z +

π

2
, γ

)
= −θ1(z, γ).

Making Poisson resummation, it is easy to prove the
useful formulas

∞∑

k=−∞
e−a(k+z)2 =

√
π

a
θ3

(
πz, e−π2/a

)
, (A5)

∞∑

k=−∞
(−1)ke−a(k+z)2 =

√
π

a
θ2

(
πz, e−π2/a

)
. (A6)

From the relations

θ3,2

(
2z, γ4

)
=

1

2
(θ3(z, γ)± θ4(z, γ)) , (A7)

it is easy to deduce that

θ3
(
2z1, γ

4
1

)
θ3

(
2z2, γ

4
2

)
+ θ2

(
2z1, γ

4
1

)
θ2

(
2z2, γ

4
2

)

=
1

2
θ3(z1, γ1)θ3(z2, γ2) +

1

2
θ4(z1, γ1)θ4(z2, γ2); (A8)

θ3
(
2z1, γ

4
1

)
θ3

(
2z2, γ

4
2

)
− θ2

(
2z1, γ

4
1

)
θ2

(
2z2, γ

4
2

)

=
1

2
θ3(z1, γ1)θ4(z2, γ2) +

1

2
θ4(z1, γ1)θ3(z2, γ2). (A9)

Moreover, for γ1 = γ2 ≡ γ

(A8) = θ3
(
z1 + z2, γ

2
)
θ3

(
z1 − z2, γ

2
)
, (A10)

(A9) = θ4
(
z1 + z2, γ

2
)
θ4

(
z1 − z2, γ

2
)
. (A11)

There also holds the following identity

4∑

i=1

θi(z1, γ)θi(z2, γ)θi(z3, γ)θi(z4, γ)

= 2θ3(z
′′
1 , γ)θ3(z

′′
2 , γ)θ3(z

′′
3 , γ)θ3(z

′′
4 , γ), (A12)

where

z′′1,2 =
z1 + z2

2
± z3 + z4

2
, z′′3,4 =

z1 − z2
2

± z3 − z4
2

.

In Ref. 50 one can also find useful expressions for the
logarithmic derivatives θ′i(z, γ)/θi(z, γ).
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APPENDIX B: TOPOLOGICAL CONSTRAINTS

FOR FIXED CHEMICAL POTENTIAL

The topological constraints formulated in Ref. 52 for
Ne = 4N0 + 2 electrons in the ground state lead to the
following possible combinations of {Jc, Nc, Js, Ns}:

{4nc, 4mc, 4ns, 4ms},
{4nc + 2, 4mc + 2, 4ns + 2, 4ms + 2},
{4nc + 2, 4mc + 2, 4ns, 4ms},
{4nc, 4mc, 4ns + 2, 4ms + 2},
{4nc, 4mc + 2, 4ns, 4ms + 2},
{4nc, 4mc + 2, 4ns + 2, 4ms},
{4nc + 2, 4mc, 4ns, 4ms + 2},
{4nc + 2, 4mc, 4ns + 2, 4ms},
{4nc + 1, 4mc + 1, 4ns + 1, 4ms + 1},
{4nc + 3, 4mc + 3, 4ns + 3, 4ms + 3},
{4nc + 1, 4mc + 1, 4ns + 3, 4ms + 3},
{4nc + 3, 4mc + 3, 4ns + 1, 4ms + 1},
{4nc + 1, 4mc + 3, 4ns + 1, 4ms + 3},
{4nc + 1, 4mc + 3, 4ns + 3, 4ms + 1},
{4nc + 3, 4mc + 1, 4ns + 3, 4ms + 1},
{4nc + 3, 4mc + 1, 4ns + 1, 4ms + 3}. (B1)

Therefore, we have to perform 16 different unconstrained

summations over nc, mc, ns, ms from −∞ to ∞.
Let us define for convenience the functions [cf. Ref. 53]

f1(zΦ, zB) =

∞∑

nc,ms=−∞
e−I0h1(zΦ,zB)/T , (B2)

f2(zR, zµ) =

∞∑

ns,mc=−∞
e−I0h2(zR,zµ)/T , (B3)

where

h1(zΦ, zB) = λc

(
nc −

zΦ
4

)2

+ νs

(
ms −

zB
4

)2

+ 2η
(
nc −

zΦ
4

) (
ms −

zB
4

)
,

h2(zR, zµ) = λs

(
ns −

zR
4

)2

+ νc

(
mc −

zµ

4

)2

+ 2η
(
ns −

zR
4

)(
mc −

zµ

4

)
,

and we must demand νsλc−η2 > 0 and νcλs−η2 > 0 to
ensure the convergence of the series in (B2) and (B3).
Note that the functions f1 and f2 have period 4 in each
argument.

If we introduce

g(zΦ, zB, zR, zµ) = [f1(zΦ, zB) + f1(zΦ + 2, zB + 2)]

× [f2(zR, zµ) + f2(zR + 2, zµ + 2)]

+ [f1(zΦ, zB + 2) + f1((zΦ + 2, zB)]

× [f2(zR, zµ + 2) + f2(zR + 2, zµ)] ,

then it becomes easy to see that the grand partition func-
tion equals to

G(zΦ, zB, zR, zµ) ≡ g(zΦ, zB, zR, zµ)

+ g(zΦ + 1, zB + 1, zR + 1, zµ + 1). (B4)

We can also define

f ′
1(zΦ, zB) =

I0
2T

∑

nc,ms

[λc (4nc − zΦ) + η (4ms − zB)]

×e−I0h1(zΦ,zB)/T , (B5)

as well as g′ and G′ replacing f1 by f ′
1 in the above defi-

nitions.
In the noninteracting limit

h1(zΦ, zB) =
1 + η

2

(
nc +ms −

zΦ + zB
4

)2

+
1 − η

2

(
nc −ms −

zΦ − zB
4

)2

.

So, we can transform nc, ms by a modular transforma-
tion. Similarly, we can proceed with h2 and ns, mc.

In the limit η = 0 the sum f1(zΦ, zB)+f1(zΦ+2, zB+2)
is proportional to

θ3

(π
4
zΦ, αc

)
θ3

(π
4
zB, βs

)
+ θ4

(π
4
zΦ, αc

)
θ4

(π
4
zB, βs

)
,

while f1(zΦ + 2, zB) + f1(zΦ + 2, zB) is proportional to

θ3

(π
4
zΦ, αc

)
θ4

(π
4
zB, βs

)
+ θ3

(π
4
zΦ, αc

)
θ4

(π
4
zB, βs

)
,

where αc and βs are given by (69). Similar relations
hold for f2. Using (A8) and (A9), one can establish the
expression (68).

For the odd number of electrons in the ground state
one can also establish the selection rules and calculate
the grand partition function. In terms of the function
G it is presented in (71). An alternative way to express
Ξ3(Φ, µ) is to introduce

G̃(zΦ, zB, zR, zµ) ≡ g̃(zΦ, zB, zR, zµ)

+ g̃(zΦ + 1, zB + 1, zR + 1, zµ + 1), (B6)

where

g̃(zΦ, zB, zR, zµ) = g(zΦ + 1, zB, zR + 1, zµ)

+ g(zΦ + 1, zB, zR − 1, zµ)

= f̃1(zΦ, zB)f̃2(zR, zµ) (B7)

and

f̃1(zΦ, zB) = f1(zΦ + 1, zB) + f1(zΦ + 1, zB + 2)

+ f1(zΦ + 3, zB) + f1(zΦ + 3, zB + 2),

f̃2(zR, zµ) = f2(zR + 1, zµ) + f2(zR + 1, zµ + 2)

+ f2(zR + 3, zµ) + f2(zR + 3, zµ + 2).
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One can show that the functions f̃1 and f̃2 have period
2 in each argument and equal to

f̃1(zΦ, zB) =

∞∑

ñc,m̃s=−∞
e−I0h̃1(zΦ,zB)/T , (B8)

f̃2(zR, zµ) =

∞∑

ñs,m̃c=−∞
e−I0h̃2(zR,zµ)/T , (B9)

where

h̃1(zΦ, zB) =
1

4

[
λc

(
ñc −

zΦ + 1

2

)2

+ νs

(
m̃s −

zB
2

)2

+ 2η

(
ñc −

zΦ + 1

2

) (
m̃s −

zB
2

)]
,

(B10)

h̃2(zR, zµ) =
1

4

[
λs

(
ñs −

zR + 1

2

)2

+ νc

(
m̃c −

zµ

2

)2

+ 2η

(
ñs −

zR + 1

2

) (
m̃c −

zµ

2

)]
.

In the noninteracting limit

h̃1(zΦ, zB) =
1 + η

8

(
ñc + m̃s −

zΦ + zB + 1

2

)2

+
1 − η

8

(
ñc − m̃s −

zΦ − zB + 1

2

)2

,

and we transform ñc, m̃s by a modular transformation.
Similarly, we proceed with h̃2 and ñs, m̃c.

The limit η = 0 for f̃1 and f̃2 is straightforward.
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