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We develop a Floquet scattering formalism for the description of quasistationary states of microwave photons in
a one-dimensional waveguide interacting with a nonlinear cavity by means of a periodically modulated coupling.
This model is inspired by the recent progress in engineering of tunable coupling schemes with superconducting
qubits. We argue that our model can realize the quantum analog of an optical chopper. We find strong periodic
modulations of the transmission and reflection envelopes in the scattered few-photon pulses, including photon
compression and blockade, as well as dramatic changes in statistics. Our theoretical analysis allows us to explain
these nontrivial phenomena as arising from nonadiabatic memory effects.

DOI: 10.1103/PhysRevA.95.043814

I. INTRODUCTION

Periodically driven quantum systems—or Floquet quantum
systems as they are often called—may behave markedly
different than their equilibrium counterparts, and it has been
shown time and time again that this difference in behavior
serves a whole range of potential applications.

In many-body quantum physics, intensive research has
recognized that the periodic driving of quantum many-body
system could create new synthetic phases of matter not
accessible in equilibrium systems. This intuition, motivated
by the classical example of the Kapitza pendulum [1], has
been explored and confirmed in several contexts. In particular,
some proposals predict the formation of topological phases
[2–4] and artificial gauge systems [5–7], as well as localized
nonthermal states in isolated many-body systems [8–12].

In quantum information protocols proposals for dynamical
decoupling schemes [13–17] and their refinements [18–20] use
periodic sequences of fast and strong symmetrizing pulses to
reduce the parts of the system-bath interaction Hamiltonian
which are sources of decoherence. Additionally, Floquet
systems also naturally appear in digital quantum computation
schemes [21]. In quantum transport various Floquet-driven
quantum tunneling problems [22] are in the heart of physics
described by effective two-level systems, quantum wells, and
quantum open systems.

In this paper we seek to combine the possibilities offered
by periodically driven quantum systems with the experimental
flexibility available in quantum photonics as, e.g., realized
in quantum optics or microwave quantum electrodynamics.
At this point it is important to stress that we do not simply
talk about the time dependence of, e.g., a classical laser field
where the time dependence always trivially can be gauged
away; instead we refer to quantum photonics systems where
the time dependence manifests itself directly in the steady-state
observables, i.e., such that they themselves become time
dependent. Specifically we are interested in the long time
behavior of the observables which can be captured by a suitably
formulated version of scattering theory.

In classical optics the most common periodically driven
instruments are optical choppers and shutters [23], famous

perhaps for their application in the first nonastronomical
speed-of-light measurements by Hippolyte Fizeau in 1849
[24], and used today, e.g., for speed or rotation measurements,
light exposure control, and off-frequency noise filtering.
The prototypical chopper uses a rotating wheel with holes
that periodically block the incident light beam, with the
added feature of being able to control the waveform of
the chopped light through the hole-diameter to beam-width
ratio [25].

One may imagine a quantum version of this instrument,
with the light beam replaced by a weak coherent state
of photons in a one-dimensional channel, and the rotating
wheel by a single emitter that periodically couples to the
channel. A key difference to the classical optical chopper is
of course that a quantum chopper could potentially maintain
a unitary evolution of the photons (when disregarding any
losses). As we later discuss, such a quantum chopper could
be used for single-photon pulse shaping [26], dynamical
routing of single photons [27], and altering of the photon
statistics [28,29].

Due to the nonlinear aspect of the emitter, a quantum
chopper may also be able to modulate the statistics of the
photons periodically in time. One may even speculate that the
resulting periodically modulated signals may be used as input
for other quantum optical instruments.

The experimental realization of a quantum chopper seems
within the grasp of current nanophotonic technologies that
allow tunable and controllable manipulation of the coupling
between different photonic elements. Various tunable coupling
schemes have already been proposed and implemented with
superconducting qubits, essentially based on the tunability
of the Josephson inductance [30–33]. Dynamic control has
also been demonstrated using an external coupling element
between two directly coupled phase and flux qubits [34–37],
between a phase qubit and a lumped element resonator [38],
and between a charge qubit and a coplanar waveguide cavity
[39]. The latter scheme uses quantum interference to provide
an intrinsic method to control the coupling. Recently a qubit
architecture that incorporates fast tunable coupling and high
coherence has been demonstrated, with dynamical tunability
at nanosecond resolution [40].
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FIG. 1. Quantum chopper model consisting of a one-dimensional
transmission line supporting two counterpropagating channels, and a
cavity with a nonlinear spectrum. The two couple through a periodic
coupling g(t).

We model the proposed quantum analog of the chopper by
the following Hamiltonian:

H (t) = H0 + V (t)

=
∫

dωh̄ω(a†
ωaω + ã†

ωãω) + h̄ωcb
†b + U

2
b†2b2

+h̄g(t)
∫

dω (a†
ωb + b†aω). (1)

Here aω = (arω + alω)/
√

2 and ãω = (arω − alω)/
√

2 de-
scribe the two waveguide fields expressed in terms of right-
and left-moving modes, g(t) is the coupling strength, and the
emitter, described by the bosons b,b†, has been generalized
to a nonlinear cavity characterized by a resonance frequency
ωc, and a nonlinearity U . An illustration of the model is also
shown in Fig. 1.

In the following sections we first show how to solve the
quasistationary dynamics of this system through a general-
ization of diagrammatic scattering theory to Floquet systems.
Then we apply the Floquet scattering theory for describing
open Floquet quantum systems explicitly in the few-photon
limit. Various results for reflection, transmission, and statistics
are then summarized. The method is general and can directly
be applied to more intricate quantum systems.

II. FLOQUET SCATTERING FORMALISM

An extension of the scattering formalism for time-periodic
Hamiltonians was originally proposed in Ref. [41] for the cal-
culation of above-threshold-ionization spectra. Remarkably,
it offered an effectively time-independent description of the
quasistationary limit in terms of the Floquet states. Later, sim-
ilar scattering approaches were developed for single-particle
scattering [42,43], many-body scattering of noninteracting
[44,45], and interacting [46] particles in driven systems.

Let us briefly review the basic ideas of scattering the-
ory. Suppose that at time t0 → −∞ we inject N pho-
tons into the transmission line while the cavity is empty.
In second quantization, this incoming state is given by

|p〉 ≡ |{ωj }〉|0〉c = (
∏N

j=1 a†
ωj

)|0〉|0〉c, where the vacuum state

|0〉 of the transmission line is defined by aω|0〉 = ãω|0〉 = 0,
and |l〉c is the photon number state of the cavity, b†b|l〉c = l|l〉c.
The energy of the incoming state equals εp = ∑N

j=1 ωj , where
we have set h̄ = 1, as we will continue to do in the rest of
this paper. After scattering, at time t → +∞, the cavity is
empty again. Since the Hamiltonian (1) conserves a number
of excitations, a scattering state S|p〉 also contains N photons.
Here S is a scattering operator which emerges from a time
evolution operator in the long time limit. In the case of the
time-independent interaction V the energy εp of the input
state is conserved in the following sense: matrix elements
Sp′p = 〈p′|S|p〉 appear to be proportional to delta functions
δ(εp′ − εp), where εp′ = ∑N

j=1 ω′
j is the energy of a state

|p′〉. Moreover, Sp′p = δp′p − 2πiδ(εp′ − εp)Tp′p(εp), where
Tp′p(E) is the energy-dependent T operator containing all the
information about scattering off the cavity. A systematic way
of computing T (E) has been developed in [47] for scatterers
with an arbitrary level structure and transition matrix elements.

Following the ideas of [41] we now elaborate on the Floquet
scattering formalism, particularly adapting it to problems
of multiparticle scattering of (microwave) photons in one-
dimensional waveguides interacting with (artificial) atoms.
Our goal is to present a systematic way of computing
the scattering operator S for a time-periodic interaction,
V (t) = V (t + T ) = ∑

m V (m)e−im�t , with a fundamental fre-
quency � = 2π

T
, in the Floquet-extended Hilbert space,

thereby generalizing the approach of Ref. [47] for time-
independent couplings.

We start from an equation for the evolution operator in the
interaction picture

i
dUint(t,t0)

dt
= Vint(t)Uint(t,t0), (2)

where Vint(t) = eiH0tV (t)e−iH0t . Taking the limit t0 → −∞
we transform Eq. (2) into the integral form

Uint(t) = 1̂ − i

∫ t

−∞
dt ′eηt ′Vint(t

′)Uint(t
′), (3)

where an infinitesimal factor η > 0 is additionally introduced
for convergence.

Next we define matrix elements Up′p(t) = 〈p′|Uint(t)|p〉 in
the eigenbasis {|p〉} of H0, and express Eq. (3) in the matrix
form

Up′p(t) = δp′p − i

∫ t

−∞
dt ′

∑
q

∑
m

ei(εp′ −εq−m�−iη)t ′

×V
(m)
p′q Uqp(t ′). (4)

Being interested in a solution of this equation at times t > 0,
satisfying the condition ηt 	 1, we look for it in the form

Up′p(t) = δp′p −
∑
m′

ei(εp′ −εp−m′�)t

εp′ − εp − m′� − iη
�

(m′)
p′p , (5)
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where �
(m′)
p′p are constant matrices. Plugging Eq. (5) into

Eq. (4), we obtain

�
(m′)
p′p = V

(m′)
p′p −

∑
q

∑
n

V
(m′−n)
p′q �(n)

qp

εq − εp − n� − iη
, (6)

from which we can establish the matrices �(m′).
At large times t we make in Eq. (5) the standard replacement

eiωt

ω−iη
→ 2πiδ(ω), and thus obtain the scattering matrix

Sp′p = δp′p − 2πi
∑
m′

δ(εp′ − m′� − εp)�(m′)
p′p . (7)

Finally, we introduce the matrix T
(m′)
p′p (E) depending on the

energy parameter E and obeying the equation

T
(m′)
p′p (E) = V

(m′)
p′p +

∑
q

∑
n

V
(m′−n)
p′q T (n)

qp (E)

E − (εq − n�) + iη
. (8)

Noticing that T
(m′)
p′p (E = εp) coincides with the matrix �

(m′)
p′p ,

we arrive at the expression

Sp′p = δp′p − 2πi
∑
m′

δ(εp′ − m′� − εp)T (m′)
p′p (εp), (9)

which relates the S matrix to the T matrix in the time-periodic
case.

As follows from Eq. (9), the energy εp of an incoming state
is conserved modulo an integer number of the drive frequency
quanta, for each of which we need to find the corresponding
T matrix from Eq. (8).

Let us consider a generalized version of Eq. (8)

T m′m
p′p (E) = V m′m

p′p + V m′n′
p′q ′

[
1

E − H ′
0 + iη

]n′n

q ′q
T nm

qp (E), (10)

where V m′m
p′p ≡ V

(m′−m)
p′p , and H ′

0 = H0 − i∂τ is the free Floquet
Hamiltonian. The operator i∂τ is defined by i∂τ |m〉 = m�|m〉
in terms of the Floquet states |m〉 = e−im�τ , such that
〈m′|m〉 = ∫ T

0
dτ
T

ei(m′−m)τ = δm′m. Thus, Eq. (10) is understood
as a relation between operators which act in the Floquet-Hilbert
space spanned by {|p〉 ⊗ |m〉}. For brevity we implicitly
assume summations (integrations) over repeated discrete
(continuous) indices.

Writing Eq. (10) in the operator form T (E) = V + V (E −
H ′

0 + iη)−1T (E), we can easily invert this equation and get
T (E) = V + V (E − H ′ + iη)−1V , where H ′ = H ′

0 + V is
the full Floquet Hamiltonian. In the matrix representation,
this solution reads

T m′m
p′p (E) = V m′m

p′p + V m′n′
p′q ′

[
1

E − H ′ + iη

]n′n

q ′q
V nm

qp . (11)

In turn, the solution of Eq. (8) T
(m′)
p′p (E) = T m′0

p′p (E) is obtained
from Eq. (11) in the special case m = 0.

Let us make the following important observation: Eq. (11)
for the T matrix in the time-periodic case has almost the
same form as its time-independent counterpart, the only
difference consisting in additional summations over Floquet
indices. Noticing that the Hamiltonian (1) conserves a number
of incoming photons after scattering, we can decompose

T = ∑∞
N=1 TN , where TN is a normal ordered N -photon

operator, and straightforwardly generalize the diagrammatic
rules of Ref. [47]. Thus, in the time-periodic case we obtain

T m′m
N (E) =

∑
{m′

j },{mj }
P0c

... V m′m1G̃m1m
′
1 (E)V m′

1m2 · · ·

×V m′
2N−2,m2N−1G̃m2N−1,m

′
2N−1 (E)V m′

2N−1,m
... P0c,

(12)

given by the alternating product of 2N interaction
operators V , and 2N − 1 dressed Green’s functions
G̃(E) = (E − H ′

0 − �)−1, of the cavity. Here P0 is a projector
onto the dark (i.e., nonrelaxing) state of the cavity. The Floquet
components of the cavity’s self-energy �mm′ ≡ �(m−m′) =
−iπ

∑
n〈V (m−n)V (n−m′)〉0 are given by an average in the vac-

uum state of a waveguide. [In particular, for the model (1) we
have P0c = |0〉c c〈0| and �mm′ = −iπb†b

∑
n g(m−n)g(n−m′)].

Finally, the symbol
...(· · · )

... denotes a modified normal ordering,
which ignores commutators between field operators contained
in different V ’s, but at the same time obliges us to canonically
commute a field operator contained in V with G̃(E) which
contains H0.

Expression (12) is exact and sufficient to describe scattering
an initial state with arbitrary number of photons. However,
because of multiple summations over Floquet indices, it is
not optimal for a theoretical analysis. In order to find a more
convenient expression, we transform Eq. (12) into the local
time representation

TNε(τ ) ≡
∑
m′

T
(m′)
N (E)e−im′�τ

=
∫ T

0

dτ1

T
. . .

dτ2N

T
δT (τ − τ1)

×P0c

(...V (τ1)G̃ε(τ1,τ2)V (τ2) · · ·

· · ·V (τ2N−1)G̃ε(τ2N−1,τ2N )V (τ2N )
...
)
P0c, (13)

where we introduced the notations ε = H0 − E = H0 − εp

and

G̃ε(τ,τ ′) =
∑
m,m′

e−im�τ G̃mm′
(E)eim′�τ ′

, (14)

and used the Poisson resummation formula∑
m′

e−im′�(τ − τ1) = T
∑

n

δ(τ − τ1 − nT ) ≡ δT (τ − τ1).

(15)

Then, from Eqs. (9) and (13) we deduce that the N -photon
operator contribution to the nontrivial part of the scattering
operator equals

(S − 1)N = −i

∫ ∞

−∞
dτei(εp′ −εp)τ TNε(τ )

= −i

∫ ∞

−∞
dτeiH0τ TNε(τ )e−iH0τ , (16)
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and the scattering operator itself is given by

S = 1 +
∞∑

N=1

(−i)
∫ ∞

−∞
dτeiH0τ TNε(τ )e−iH0τ . (17)

Now it is necessary to establish an explicit form of G̃ε(τ,τ ′)
defined in Eq. (14). From the relations∑

m′′
[(m� − ε)δmm′′ − �mm′′

]G̃m′′m′
(E) = δmm′ , (18)

∑
m′′

G̃mm′′
(E)[(m′� − ε)δm′′m′ − �m′′m′

] = δmm′ , (19)

which are equivalent to the definition of G̃mm′
(E), we obtain

the differential equations

(i∂τ − ε)G̃ε(τ,τ ′) − �(τ )G̃ε(τ,τ ′) = δT (τ − τ ′), (20)

(−i∂τ ′ − ε)G̃ε(τ,τ ′) − G̃ε(τ,τ ′)�(τ ′) = δT (τ − τ ′), (21)

where �(τ ) = −iπ〈V 2(τ )〉0 = ∑
m �(m)e−im�τ . Equipping

them with the periodic boundary conditions in both variables,
we find a solution

G̃ε(τ,τ ′) = −iT
∑

n

�(τ − τ ′ − nT )e−iε̄(τ−τ ′−nT )

× e−Fosc(τ )+Fosc(τ ′), (22)

where ε̄ = ε + �(0) and Fosc(τ ) = −∑
m�=0

�(m)

m�
e−im�τ . In-

serting it into Eq. (13) and extending the finite integration
ranges 0 < τj < T to the infinite ones −∞ < tj < ∞, we
cast the scattering operator (17) to the form

S = 1 +
∞∑

N=1

(−i)2N

∫
dt1 · · · dt2N�(t1 > · · · > t2N )

× ei(H0−E)t1P0c

(
[t]

... V (t1)e−F (t1)eF (t2)V (t2)e−F (t2) · · ·

×V (t2N−1)e−F (t2N−1)eF (t2N )V (t2N ) [t]
...
)
P0c, (23)

where F (t) = i(H0 + �(0) − E)t + Fosc(t), and E is the en-
ergy of an input state. In the following we identify S with
c〈0|S|0〉c.

Note that an N -photon operator from the above sum gives
only nonzero contribution, if it is applied to an M-photon
initial state such that N � M . This means that for an M-photon
initial state the sum can be truncated after the Mth term. To
illustrate an application of Eq. (23) we consider in the next
section examples of a single- and two-photon scattering in the
model (1).

III. FEW-PHOTON SCATTERING

Let us consider the model (1) and assume that an initial state
is prepared in a form of a coherent rectangular pulse of length
L, which is initially located far left from the cavity and starts
moving toward it in the right direction with a constant velocity
v. In the interaction picture, this initial state is expressed by

|�i〉 = e−|α|2/2eαA†
r,ω0 |0〉, (24)

where Ar,ω0 = ∫
dωφ(ω)arω is a normalized wave-packet

operator centered around the mode ω0 and broadened over
the width ∼ 2πv

L
. Formally it is defined by the function

φ(ω) =
√

2v

πL

sin L
2v

(ω − ω0)

ω − ω0
, (25)

which approaches
√

2πv
L

δ(ω − ω0) for long pulses.
For weak coherence |α| 	 1 we approximate the state (24)

by

|�i〉 ≈ e−|α|2/2

[
1 + αA†

r,ω0
+ α2 (A†

r,ω0 )2

2

]
|0〉. (26)

Both single- and two-photon states contributing to Eq. (26)
have a well-defined energy in the long pulse limit L → ∞,
and therefore we can apply the scattering operator (23) to
each of them, thus obtaining a final state |�f 〉 = S|�i〉 in the
two-photon approximation.

We are interested in computing—to the leading order in α—
the average transmitted and reflected fields and their statistical
properties quantified by the second-order coherence function
g(2). In particular, defining the field operators in the coordinate
representation

aσ (x) = 1√
2πv

∫
dωaσωeiωx/v, σ = r,l, (27)

we wish to find 〈�f |aσ (x − vt)|�f 〉 and

g
(2)
σσ ′(t,τd ) = G

(2)
σσ ′(t,τd )

g
(1)
σ (t)g(1)

σ ′ (t + τd )
, (28)

where

G
(2)
σσ ′(t,τd ) = 〈�f |a†

σ (x − vt)a†
σ ′(x − vt − vτd )

× aσ ′ (x − vt − vτd )aσ (x − vt)|�f 〉, (29)

g(1)
σ (t) = 〈�f |a†

σ (x − vt)aσ (x − vt)|�f 〉, (30)

and τd is a delay time.
Because of an explicit time dependence in the Hamiltonian

(1), there is no time translational invariance in the long time
limit (a corresponding system’s state is therefore said to be
quasistationary), and the above-defined functions also depend
on the evolution time t (though in a periodic way, as we will
see later). Note that the definition (27) implies that the x axis
for left-moving photons (σ = l) points in the left direction.

Since in the Hamiltonian (1) only even states (aω = arω+alω√
2

)

are coupled to the cavity, and odd states (ãω = arω−alω√
2

)
are decoupled from it, it appears convenient to express the
scattering operator in the basis of even states, also representing
the initial state (26) in terms of even and odd states. A task of
finding |�f 〉 essentially reduces to evaluation of SA†

ω0
|0〉 and

S 1
2 (A†

ω0
)2|0〉, where Aω0 is an even counterpart of Ar,ω0 . We

consider these cases of single- and two-photon scattering in
the following sections.

A. Single-photon scattering

Let us first establish how the scattering operator (23) acts
on a single-photon plane-wave even state a†

ω|0〉 with energy

043814-4
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E = ω. Truncating the sum in Eq. (23) at N = 1, we obtain

Sa†
ω|0〉

= a†
ω|0〉 −

∫
dt1dt2�(t1 > t2)

∫
dω1

∫
dω2e

i(ω1−ω)t1

× c〈0|([t]
... g(t1)a†

ω1
be−F (t1)eF (t2)g(t2)b†aω2 [t]

...
)|0〉c a†

ω|0〉

= a†
ω|0〉 −

∫
dω1

∫ ∞

−∞
dt1e

i(ω1−ω)t1g(t1)e−f1ω(t1)

×
∫ t1

−∞
dt2e

f1ω(t2)g(t2)a†
ω1

|0〉

≡
∫

dω1[δω1ω + sω1ω]a†
ω1

|0〉. (31)

The function F (t) for the model (1) acquires the form

F (t) = i(H0 − i�(0)b†b − E)t + fosc(t)b†b, (32)

where �(0) + ḟosc(t) = πg2(t) ≡ �(t), and fosc(t) is fixed
by the condition that it does not have a zero frequency
component. To single-photon scattering contributes only a
single-excitation component 〈1|F (t)|1〉, and its contribution
is appropriately written in terms of the functions f1ω(t) =
i(ωc − i�(0) − ω)t + fosc(t).

Folding Eq. (31) with the wave packet φ(ω) and applying
the field operator a(x − vt) to the obtained single-photon
scattering state, we find

a(x − vt)SA†
ω0

|0〉 = e−iω0tx

√
L

[1 + 2A(tx)]|0〉, (33)

A(tx) = −πg(tx)e−f1(tx )
∫ tx

−∞
dt ′ef1(t ′)g(t ′), (34)

where t is time elapsed since the beginning of the interaction
and tx = t − x/v is a time lag between the pulse front and the
field at point x. In Eq. (34) we have also introduced

f1(t) ≡ f1ω0 (t) = −i(δ + i�(0))t + fosc(t), (35)

with the detuning δ = ω0 − ωc. The function A(tx) is periodic
in its argument, A(tx) = A(tx + T ), and therefore we can
reduce the central time of pulse evolution tx (in other words,
the observation time at point x) to a single period: tx → τc ∈
[−T/2,T /2].

Transforming Eq. (33) to the basis of right and left modes,
we obtain the transmitted field (labeled by r , the direction
of the incident field) and the reflected field (labeled by l, the
opposite direction)

ar,l(−vtx)SA†
r,ω0

|0〉 = a(−vtx) ± ã(−vtx)√
2

SA†
ω0

+ Ã†
ω0√

2
|0〉

= e−iω0tx

√
L

[
1 ± 1

2
+ A(tx)

]
|0〉. (36)

The transmission t(τc) = 1 + A(τc) and reflection r(τc) =
A(τc) amplitudes give envelope shapes of the corresponding
fields, and they are not constant in time. Nevertheless, they
obey the normalization condition

1

T

∫ T

0
dτc(|t(τc)|2 + |r(τc)|2) = 1, (37)

corresponding to a conservation of the photon number (see
Appendix A for the proof). In the linear regime, one can relate
the transmission and reflection amplitudes to the equal-time
first-order coherences of Eq. (30) by

g(1)
r (τc) = |α|2

L
|t(τc)|2, g

(1)
l (τc) = |α|2

L
|r(τc)|2. (38)

Periodic time dependence of an envelope of a scattered
field is the main effect of a periodic time modulation of
coupling seen in a single-photon scattering. In the following
we study this dependence for different modulation protocols.
To evaluate A(τc) for τc ∈ [−T/2,T /2] in practice, it is
convenient to split the integral range [−∞,τc] in Eq. (34)
into two ranges [−∞, − T/2] and [−T/2,τc]. The integral
over the second range can be evaluated numerically, while the
integral over the first range can be converted into a geometric
series by using the periodicity of g(t) and fosc(t) which
results in

∫ −T/2

−∞
dt ′e−i(δ+i�(0))t ′efosc(t ′)g(t ′) = C0

e−i(δ+i�(0))T − 1
. (39)

Here C0 = ∫ T/2
−T/2 dt ′e−i(δ+i�(0))t ′efosc(t ′)g(t ′) is also evaluated

numerically.
Before choosing specific protocols g(t), let us first analyze

under which conditions one can expect an interesting time
behavior of an envelope A. The most trivial time dependence
appears in the case of slow driving, when A(τc) instanta-
neously follows g(τc). It is captured by applying the adiabatic
approximation to Eq. (34), which is achieved by expanding
the integrand close to the upper limit given by the time of
observation τc. Physically this means that a protocol’s history
influences very little the present time value of A. We have

A(τc) = −πg(τc)
∫ 0

−∞
dτef1(τc+τ )−f1(τc)g(τc + τ )

≈ −πg(τc)
∫ 0

−∞
dτeḟ1(τc)τ

×
[
g(τc) + ġ(τc)τ + 1

2
g(tx)f̈1(τc)τ 2

]
. (40)

Noticing that ḟ1(τc) = −i[δ + i�(τc)], we conclude

A(τc) ≈ − i�(τc)

δ + i�(τc)

[
1 − iġ(τc)

g(τc)

δ − i�(τc)

[δ + i�(τc)]2

]
. (41)

The leading term gives the instantaneous amplitude, and
the second term represents the adiabatic correction. This
approximation is valid as long as the adiabaticity condition

∣∣∣∣ ġ(t)

g(t)

∣∣∣∣ 	
√

δ2 + �2(t) (42)

is fulfilled. Interesting and unexpected behavior shows up
when this condition is violated as we explore in further detail
in Sec. IV.
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B. Two-photon scattering

Applying the scattering operator (23) to the two-photon state with energy E = ω + ω′ we obtain

Sa†
ωa

†
ω′ |0〉 = 1

2
a†

ωa
†
ω′ |0〉 +

∫
dω1sω1ωa†

ω1
a
†
ω′ |0〉 +

∫
dω1dω2dω3dω4

∫
dt1dt2dt3dt4�(t1 > t2 > t3 > t4)ei(H0−E)t1

× c〈0|([t]
... g(t1)a†

ω1
be−F (t1)eF (t2)g(t2)b†aω3e

−i(H0−E)(t2−t3)g(t3)a†
ω2

be−F (t3)eF (t4)g(t4)b†aω4 [t]
...

+ [t]
... g(t1)a†

ω1
be−F (t1)eF (t2)g(t2)a†

ω2
be−F (t2)eF (t3)g(t3)b†aω3e

−F (t3)eF (t4)g(t4)b†aω4 [t]
...
)|0〉ca†

ωa
†
ω′ |0〉 + (ω ↔ ω′).

(43)

The N = 2 contribution is represented by the two terms populating the cavity with at most one photon (∼ bb†bb†) and with two
photons (∼ bbb†b†). Simplifying Eq. (43) (see Appendix B) we obtain

a(−vtx − vτd )a(−vtx)S
A† 2

ω0

2
|0〉 = e−iω0(2tx+τd )

L
[1 + 2A(tx) + 2A(tx + τd ) + 4B̄(tx,τd )]|0〉, (44)

where

B̄(tx,τd ) = B(tx,τd ) + A(tx)A(tx + τd ), (45)

B(tx,τd ) = −iUg(tx)e−f1(tx )g(tx + τd )e−f1(tx+τd )
∫ tx

−∞
dt ′eiU (t ′−tx )+2f1(t ′) A

2(t ′)
g2(t ′)

. (46)

The function B in Eq. (46) is associated with an inelastic
contribution to the two-photon scattering: it vanishes for U =
0. It is periodic in the argument tx , therefore we can again make
a replacement tx → τc. For the time-independent coupling we
recover the expression

B(τd ) = −A2 U

U − 2(δ + i�)
ei(δ+i�)τd . (47)

In the large U limit, which corresponds to the case of a
two-level system, the inelastic contribution (46) becomes equal
(see Appendix B)

B(tx,τd ) = −g(tx + τd )

g(tx)
A2(tx)efosc(tx )−fosc(tx+τd )ei(δ+i�)τd .

(48)

With help of Eq. (44) we find analogous expressions for
transmitted and reflected fields

ar (−vtx − vτd )ar (−vtx)S
A† 2

r,ω0

2
|0〉

= e−iω0(2tx+τ )

L
[t(tx)t(tx + τd ) + B(tx,τd )]|0〉, (49)

al(−vtx − vτd )al(−vtx)S
A† 2

r,ω0

2
|0〉

= e−iω0(2tx+τd )

L
[r(tx)r(tx + τd ) + B(tx,τd )]|0〉, (50)

which allow us to define the corresponding second-order
coherence functions

g(2)
rr (τc,τd ) =

∣∣∣∣1 + B(τc,τd )

t(τc)t(τc + τd )

∣∣∣∣
2

, (51)

g
(2)
ll (τc,τd ) =

∣∣∣∣1 + B(τc,τd )

r(τc)r(τc + τd )

∣∣∣∣
2

. (52)

IV. RESULTS

A. Reflection and transmission

Assuming a weakly coherent initial signal in the right-
moving mode ar,ω0 , we study in this section the linear
reflection r(τc) = A(τc) and transmission t(τc) = 1 + A(τc),
which are periodic functions of the reduced central time τc ∈
[−T/2,T /2]. Their absolute values give envelope shapes of
average reflected and transmitted fields, periodically changing
in space and time. This behavior contrasts with the case
time-independent coupling featuring constant r = − i�

δ+i�
and

t = δ
δ+i�

.
We apply the general results of Sec. III to two coupling

modulation protocols: (1) “on-off” g(t) = g0(1 + cos �t); and
(2) “sign change” g(t) = g0 cos �t . In the on-off protocol the
coupling strength is periodically quenched to zero [Fig. 2(a)],
while in the sign-change protocol, the sign of g(t) changes after
crossing zero [Fig. 2(c)]. A notable difference between the two
protocols is that the former yields a 2π -periodic modulation
of a field’s amplitude [Fig. 2(b)], while the latter yields a
π -periodic one [Fig. 2(d)].

For a time-independent interaction, a single photon on
resonance (δ = 0) is fully reflected (r = −1), regardless
the value of the coupling strength. Should the adiabaticity
condition (42) be fulfilled at every time t for a time periodic
interaction, we would expect the reflection amplitude r(t)
to follow �(t) instantaneously [see Eq. (41)], also showing
(almost) full reflection in the resonant case (up to a small
fraction ∼ |ġ(t)/[g(t)�(t)]| of the transmitted photon’s prob-
ability density). However, the adiabaticity condition (42) is
strongly violated for these two protocols. For any protocol
with a momentary quench of coupling this can happen even
at slow driving. In these cases the nonadiabatic behavior
of A does depend on a protocol’s history as we shall see
later.
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(a)

(b)

(c)

(d)

FIG. 2. Envelopes of the reflected field. (a) The on-off cosine
signal, and the resulting (b) envelope as a function of the central time
τc for various driving speeds. Note the perfect transmission (A = 0)
when the coupling is quenched. (c) The sign-change cosine signal
and the resulting (d) envelope. The envelope repeats itself after a
half period, and in addition to the two coupling quench nodes at
�τc = ±π/2 an extra node develops at �τc ≈ −π/2 (at slow drive)
and moves toward τc = 0 (at fast drive).

Moreover, at certain time instants the coupling strength in
both of them is quenched, implying a momentary decoupling of
microwave photons from the cavity and hence full transmission
at these time instants. Since we are dealing with an open
quantum system, this qualitative picture becomes even more
complicated due to memory effects, and the nonadiabatic
behavior can be explained as a sum over histories. Each history
has the photon entering the cavity at some initial time τi and
leaving at some later time τf , with an amplitude g(τi)g(τf )
and a weight determined by the decay probability of the
photonic state in the cavity, exp(− ∫ τf

τi
�(τ )dτ ). The reflection

coefficient at τf , given by the sum over initial times τi , is
highly influenced by the evolution within a memory window
set by the decay rate of the cavity.

In the on-off protocol the memory window is largest
for final times after the �τc = −π node, meaning that the
photon remains longer in the cavity and is released shortly
after when the coupling strength is sufficiently increased,
producing a spike in the reflection coefficient that overshoots
unity [Fig. 2(b)]. In the sign-change protocol, memory effects
create an additional node, which is absent in g(t), close to
�τc = −π/2 for slow drive, and moving toward τc = 0 for
faster drives [Fig. 2(d)]. For times shortly after the −π/2 node
of g(t) the memory window includes histories with amplitudes
of opposite signs, and their competition creates this additional
node. These two examples show how different protocols may
not only chop the wave packet of the incoming photon, but
also significantly alter its form.

The resulting envelopes strongly depend on the nor-
malized frequency β = �/�(0), where �(0) is the zeroth
harmonic of �(t). For the fast drive β � 1, we ob-
tain A(τc) ≈ − 2

3 (1 + cos �τc) in the on-off protocol, which
means that the reflected pulse follows g(τc), not �(τc);
and A(τc) ≈ − 1

β
sin 2�τc following �(0)τc − f1(τc) in the

FIG. 3. Envelope function A(τc) for rectangular driving proce-
dures, which are nonsmooth versions of the on-off and sign-change
protocols in Fig. 2. The off component of the on-off signal has been
set at (a more realistic) small nonzero value, goff = g0/5.

sign-change protocol. In the second case, A(τc) is negligibly
small, so that we have (almost) full transmission despite the
resonance—this effect is in sharp contrast to its nondriven
counterpart, where the full reflection is expected. Thus, this
protocol can be used for the dynamical routing of photons.
For slow drive, β 	 1, the adiabaticity condition is fulfilled at
least within some range around τc = 0, and this accounts for
the formation of a plateau with A(τc) ≈ −1, resembling full
reflection in the nondriven resonant case.

As we have seen above, a momentary quench of coupling
leads to a formation of nodes in the reflected field. This effect
can be viewed as the quantum version of optical chopping. It is
a quantum effect because a scattered single photon remains in
a linear superposition of its transmitted and reflected states.
It is analogous to chopping because the amplitude of the
transmitted signal is periodically changed from its maximal
value down to zero and back again.

To make this analogy more obvious we show in Fig. 3
the single-photon reflection amplitudes in the resonant case
δ = 0 for rectangular driving procedures that more closely
resemble the operation of a conventional chopper: on the figure
at |g| ∼ g0 the photon passage is shut (full reflection), while at
|g| 	 g0 it is open (full transmission). The envelope function
A(τc) shows qualitatively the same effects as for the cosine
signal investigated above. Note that at large β (fast drive), the
signal shaping also works for the on-off procedure, as it does
for the cosine signal.

B. Second-order coherence

The second-order coherences in Eq. (28) manifest nonlinear
effects quantified by the value of U . Only fast drives,
β = �/�(0) � 1, are able to affect the correlations before they
decay, and we numerically calculate g

(2)
ll for fast and moderate

drives in the two cosine protocols. In the on-off protocol, the
fast drive only induces small oscillations in the correlation
function around the nondriven results, as shown in Fig. 4.

In contrast, the sign-change protocol induces huge bunching
effects due to the additional node in the single-photon
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∞

FIG. 4. The g
(2)
ll (τc = 0,τd ) correlation function for the on-off

protocol at fast driving, β = 10. The g(2) correlations for the
corresponding nondriven system with a decay rate set to �(0) are
shown as dashed lines, and the (uninteresting) correlations for the
driven system slightly oscillate around the nondriven antibunching
curves.

reflection, as can be clearly seen in Fig. 5(a). We also
find periodic oscillations between strong bunching (red
areas) and antibunching (blue areas) away from �τc = 0
and �τc = ±π . This is a dramatic change in statistical
properties of the reflected light due to the time dependence
of g(t) as compared to the case of constant g, where g

(2)
ll

is monotonously antibunched. For a moderate drive, β = 1,
all oscillatory effects in the sign-change protocol die out for
delay times longer than a single drive period, as shown in
Fig. 5(b).

The photon compression by the on-off driving introduces
nodes in the transmission and produces, similar to the field
quench effects in the reflected light for the sign-change
protocol, strong bunching in the transmitted light captured by
g(2)

rr . This picture is verified by a numerical calculation of the
correlation function for fast drive, β = 10, and nonlinearity,
|U | = 2�(0), as shown in Fig. 6.

g
(2)
ll for β = 10

(a) (b)
g
(2)
ll for β = 1

1
2

1
2

FIG. 5. Second-order coherence of the reflected pulse g
(2)
ll in the

sign-change protocol as a function of central time τc and delay time
τd for the Kerr nonlinearity |U | = 4�(0). We show results for (a) the
fast drive β = 10, where huge periodically repeated bunching peaks
are formed and interwoven with areas of moderate bunching and
antibunching; (b) the intermediate drive β = 1, showing the decay
of g

(2)
ll to the uncorrelated value (white area). Insets: Comparison

of the cuts at �τc = − π

2 (dashed line) with the unmodulated g
(2)
ll

(solid line).

g(2)
rr at β = 10

FIG. 6. The g(2)
rr correlation of transmitted light in the on-off

protocol at fast driving, β = 10, with a nonlinearity |U | = 2�(0). Note
the strong periodically recurring bunching due to the wave-packet
compression.

V. SUMMARY

We have proposed a quantum analog of an optical chopper,
operating at the few-photon level and realizable by a time-
periodic modulation of the photon emitter coupling. We have
developed an exact Floquet scattering approach based on
diagrammatic scattering theory and applied it to quantitatively
describe scattering of microwave photons from the nonlinear
cavity in two driving protocols of the coupling: on-off and
sign change. In both of them we have observed interesting
nonadiabatic memory effects arising due to the driving. In
particular, the on-off protocol produces periodic compressions
of the photon’s wave packet at slow drive, while at fast
drive the signal is directly encoded into the shape of the
single-photon pulse. The sign-change protocol in turn gives
rise to the additional nodes in the envelope at which the
field is completely quenched, while at fast drive it may
completely change the direction of a photon. These are two
examples of chopping realizable at the quantum single-photon
level. In addition, in the latter protocol we find dramatic
changes in statistical properties of the reflected field showing
up as strong bunching peaks in the g(2) function that are
interwoven with periodically alternating areas of antibunching
and moderate bunching—features that are in sharp contrast to
their nondriven counterparts. Thus, our findings can be useful
for single-photon pulse shaping, dynamical routing of photons,
and altering of the photon statistics in real time.
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APPENDIX A: PROOF OF THE NORMALIZATION CONDITION

To prove the normalization condition (37) we need to show that∫ T

0
dτc|A(τc)|2 = −Re

∫ T

0
dτcA(τc). (A1)

Let us introduce the function

W (t) =
∫ t

−∞
dt ′ef1(t ′)g(t ′) ≡ − A(t)

πg(t)
ef1(t). (A2)

Noticing that d
dt

[f1(t) + f ∗
1 (t)] = 2�(t) = 2πg2(t) we integrate the left-hand side of Eq. (A1) by parts:∫ T

0
dτcπ�(τc)e−[f1(τc)+f ∗

1 (τc)]|W (τc)|2 = −π

2
e−[f1(τc)+f ∗

1 (τc)]|W (τc)|2
∣∣∣∣
T

0

+ π

2

∫ T

0
dτce

−[f1(τc)+f ∗
1 (τc)]

× [Ẇ ∗(τc)W (τc) + W ∗(τc)Ẇ (τc)]. (A3)

The first term vanishes because of the periodicity of the function e−f1(t)W (t), while the second term amounts to

π

2

∫ T

0
dτcg(τc)[e−f1(τc)W (τc) + e−f ∗

1 (τc)W ∗(τc)], (A4)

which coincides with the right-hand side of Eq. (A1). Thus, Eq. (37) is fulfilled.

APPENDIX B: EVALUATION OF THE TWO-PHOTON SCATTERING STATE

The form of the two-photon scattering state in Eq. (43) can be reduced to

Sa†
ωa

†
ω′ |0〉 = 1

2
a†

ωa
†
ω′ |0〉 +

∫
dω1sω1ωa†

ω1
a
†
ω′ |0〉 +

∫
dω1dω2

∫
dt1dt2dt3dt4�(t1 > t2 > t3 > t4)ei(ω1+ω2−ω−ω′)t1

× [g(t1)e−f1,E−ω2 (t1)ef1,E−ω2 (t2)g(t2)e−i(ω2−ω′)(t2−t3)g(t3)e−f1ω′ (t3)ef1ω′ (t4)g(t4)

+ 2g(t1)e−f1,E−ω2 (t1)ef1,E−ω2 (t2)g(t2)e−f2(t2)ef2(t3)g(t3)e−f1ω′ (t3)ef1ω′ (t4)g(t4)]a†
ω1

a†
ω2

|0〉 + (ω ↔ ω′), (B1)

where f2(t) = i(2ωc + U − 2i�(0) − ω − ω′)t + 2fosc(t). Folding it with φ(ω)φ(ω′) and applying the field operators a(−vtx −
vτd )a(−vtx) we obtain expression (44) with

4B̄(tx,τd ) =
∫

dω1dω2

∫
dt1dt2dt3dt4�(t1 > t2 > t3 > t4)ei(ω1−ω0)t1ei(ω2−ω0)t2

×[g(t1)e−f1(t1)ef1(t2)g(t2)e−i(ω2−ω0)(t2−t3)g(t3)e−f1(t3)ef1(t4)g(t4)

+2e−iU (t2−t3)g(t1)e−f1(t1)ef1(t2)g(t2)e−2f1(t2)e2f1(t3)g(t3)e−f1(t3)ef1(t4)g(t4)]

×(e−itx (ω1−ω0)e−i(tx+τd )(ω2−ω0) + e−itx (ω2−ω0)e−i(tx+τd )(ω1−ω0)), (B2)

and f1(t) defined in Eq. (35). Performing frequency integrals in Eq. (B2) simplifies it to

B̄(tx,τd ) = π2g(tx + τd )e−f1(tx+τd )g(tx)e−f1(tx )
∫

dt2dt4e
f1(t4)g(t4)ef1(t2)g(t2)

× [�(tx + τd > t2 > tx)�(tx > t4) + 2�(tx > t2 > t4)e−iU (tx−t2)]. (B3)

The second integral containing the U -dependent phase factor can be written in terms of function (A2) as∫ tx

−∞
dt22Ẇ (t2)W (t2)e−iU (tx−t2) = W 2(tx) − iU

∫ tx

−∞
dt2W

2(t2)e−iU (tx−t2). (B4)

Representing

W 2(tx) =
∫ tx

−∞
dt2e

f1(t2)g(t2)
∫ tx

−∞
dt4e

f1(t4)g(t4), (B5)

we substitute Eq. (B4) in Eq. (B3) and obtain

B̄(tx,τ ) = π2g(tx + τd )e−f1(tx+τd )g(tx)e−f1(tx )

[∫ tx+τd

−∞
dt2e

f1(t2)g(t2)
∫ tx

−∞
dt4e

f1(t4)g(t4) − iU

∫ tx

−∞
dt2W

2(t2)e−iU (tx−t2)

]
, (B6)

which is equivalent to Eqs. (45) and (46). Note that the contribution (B4) to the inelastic part of g(2) vanishes in the limit |U | → ∞
(rapid oscillations average the integral in the left-hand side to zero). Thus, we obtain Eq. (48).

043814-9



PLETYUKHOV, PEDERSEN, AND GRITSEV PHYSICAL REVIEW A 95, 043814 (2017)

[1] P. L. Kapitza, Dynamic stability of a pendulum when its point
of suspension vibrates, Sov. Phys. JETP 21, 588 (1951).

[2] N. H. Lindner, G. Refael, and V. Galitski, Floquet topological
insulator in semiconductor quantum wells, Nat. Phys. 7, 490
(2011).

[3] T. Kitagawa, T. I. Oka, A. Brataas, L. Fu, and E. Demler,
Transport properties of nonequilibrium systems under the
application of light: Photoinduced quantum Hall insulators
without Landau levels, Phys. Rev. B 84, 235108 (2011).

[4] T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Topological
characterization of periodically driven quantum systems, Phys.
Rev. B 82, 235114 (2010).

[5] N. Goldman and J. Dalibard, Periodically Driven Quantum
Systems: Effective Hamiltonians and Engineered Gauge Fields,
Phys. Rev. X 4, 031027 (2014).

[6] P. Hauke et al. Non-Abelian Gauge Fields and Topological
Insulators in Shaken Optical Lattices, Phys. Rev. Lett. 109,
145301 (2012).

[7] K. Fang, Z. Yu, and S. Fan, Realizing effective magnetic field
for photons by controlling the phase of dynamic modulation,
Nat. Photon. 6, 782 (2012).

[8] P. Ponte, Z. Papić, F. Huveneers, and D. A. Abanin, Many-Body
Localization in Periodically Driven Systems, Phys. Rev. Lett.
114, 140401 (2015).

[9] M. Bukov, M. Heyl, D. A. Huse, and A. Polkovnikov, Heating
and many-body resonances in a periodically driven two-band
system, Phys. Rev. B 93, 155132 (2016).

[10] Y. Liao and M. S. Foster, Spectroscopic probes of isolated
nonequilibrium quantum matter: Quantum quenches, Floquet
states, and distribution functions, Phys. Rev. A 92, 053620
(2015).

[11] L. D’Alessio and A. Polkovnikov, Many-body energy localiza-
tion transition in periodically driven systems, Ann. Phys. (NY)
333, 19 (2013).

[12] M. Bukov, L. D’Alessio, and A. Polkovnikov, Universal
high-frequency behavior of periodically driven systems: from
dynamical stabilization to Floquet engineering, Adv. Phys. 64,
139 (2015).

[13] L. Viola and S. Lloyd, Dynamical suppression of decoherence
in two-state quantum systems, Phys. Rev. A 58, 2733 (1998).

[14] M. Ban, Photon-echo technique for reducing the decoherence of
a quantum bit, J. Mod. Opt. 45, 2315 (1998).

[15] L. Viola, E. Knill, and S. Lloyd, Dynamical Decoupling of Open
Quantum Systems, Phys. Rev. Lett. 82, 2417 (1999).

[16] P. Zanardi, Symmetrizing evolutions, Phys. Lett. A 258, 77
(1999).

[17] E. Knill, R. Laflamme, and L. Viola, Theory of Quantum Error
Correction for General Noise, Phys. Rev. Lett. 84, 2525 (2000).

[18] K. Khodjasteh and D. A. Lidar, Fault-Tolerant Quantum
Dynamical Decoupling, Phys. Rev. Lett. 95, 180501 (2005).

[19] G. S. Uhrig, Keeping a Quantum Bit Alive by Optimized π -Pulse
Sequences, Phys. Rev. Lett. 98, 100504 (2007); 106, 129901(E)
(2011).

[20] K. Khodjasteh and L. Viola, Dynamically Error-Corrected Gates
for Universal Quantum Computation, Phys. Rev. Lett. 102,
080501 (2009).

[21] R. Blatt and C. F. Roos, Quantum simulations with trapped ions,
Nat. Phys. 8, 277 (2012).

[22] M. Grifoni and P. Hänggi, Driven quantum tunneling, Phys. Rep.
304, 229 (1998).

[23] W. Boyes, Instrumentation Reference Book (Butterworth-
Heinemann, New York, 2009).

[24] M. H. Fizeau, Sur une expérience relative à la vitesse de
propagation de la lumiére, Comptes Rendus 39, 90 (1849).

[25] V.-F. Duma, M. F. Nicolov, and M. Kiss, Optical chop-
pers: Modulators and attenuators, in Proceedings of SPIE
7469, ROMOPTO 2009, Ninth Conference on Optics: Micro-
to Nanophotonics, Vol. II (SPIE, Bellingham, WA, 2010),
p. 74690V.

[26] P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris,
Electro-Optic Modulation of Single Photons, Phys. Rev. Lett.
101, 103601 (2008).

[27] I.-C. Hoi, C. M. Wilson, G. Johansson, T. Palomaki, B.
Peropadre, and P. Delsing, Demonstration of a Single-Photon
Router in the Microwave Regime, Phys. Rev. Lett. 107, 073601
(2011).

[28] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics
(Cambridge University Press, Cambridge, England, 1995).

[29] D. Bouwmeester, A. K. Ekert, and A. Zeilinger, The Physics of
Quantum Information (Springer, Berlin, 2000).

[30] R. A. Pinto, A. N. Korotkov, M. R. Geller, V. S. Shumeiko, and
J. M. Martinis, Analysis of a tunable coupler for superconducting
phase qubits, Phys. Rev. B 82, 104522 (2010).

[31] R. C. Bialczak, M. Ansmann, M. Hofheinz, M. Lenander, E.
Lucero, M. Neeley, A. D. O’Connell, D. Sank, H. Wang, M.
Weides, J. Wenner, T. Yamamoto, A. N. Cleland, and J. M.
Martinis, Fast Tunable Coupler for Superconducting Qubits,
Phys. Rev. Lett. 106, 060501 (2011).

[32] Y. Yin, Y. Chen, D. Sank, P. J. J. O’Malley, T. C. White, R.
Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C.
Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland,
and J. M. Martinis, Catch and Release of Microwave Photon
States, Phys. Rev. Lett. 110, 107001 (2013).

[33] M. Pierrea, I.-M. Svensson, S. R. Sathyamoorthy, G. Johansson,
and P. Delsing, Storage and on-demand release of microwaves
using superconducting resonators with tunable coupling, Appl.
Phys. Lett. 104, 232604 (2014).

[34] R. Harris, A. J. Berkley, M. W. Johnson, P. Bunyk, S.
Govorkov, M. C. Thom, S. Uchaikin, A. B. Wilson, J. Chung, E.
Holtham, J. D. Biamonte, A. Yu. Smirnov, M. H. S. Amin, and
A. M. van den Brink, Sign- and Magnitude-Tunable Coupler
for Superconducting Flux Qubits, Phys. Rev. Lett. 98, 177001
(2007).

[35] A. O. Niskanen, K. Harrabi, F. Yoshihara, Y. Nakamura, S.
Lloyd, and J. S. Tsai, Quantum coherent tunable coupling of
superconducting qubits, Science 316, 723 (2007).

[36] S. H. W. van der Ploeg, A. Izmalkov, A. Maassen van den
Brink, U. Hübner, M. Grajcar, E. Il’ichev, H.-G. Meyer, and
A. M. Zagoskin, Controllable Coupling of Superconducting
Flux Qubits, Phys. Rev. Lett. 98, 057004 (2007).

[37] T. Hime, P. A. Reichardt, B. L. T. Plourde, T. L. Robertson,
C.-E. Wu, A. V. Ustinov, and J. Clarke, Solid-state qubits with
current-controlled coupling, Science 314, 1427 (2006).

[38] M. S. Allman, F. Altomare, J. D. Whittaker, K. Cicak, D.
Li, A. Sirois, J. Strong, J. D. Teufel, and R. W. Simmonds,
rf-SQUID-Mediated Coherent Tunable Coupling between a Su-
perconducting Phase Qubit and a Lumped-Element Resonator,
Phys. Rev. Lett. 104, 177004 (2010).

[39] S. J. Srinivasan, A. J. Hoffman, J. M. Gambetta, and
A. A. Houck, Tunable Coupling in Circuit Quantum

043814-10

https://doi.org/10.1038/nphys1926
https://doi.org/10.1038/nphys1926
https://doi.org/10.1038/nphys1926
https://doi.org/10.1038/nphys1926
https://doi.org/10.1103/PhysRevB.84.235108
https://doi.org/10.1103/PhysRevB.84.235108
https://doi.org/10.1103/PhysRevB.84.235108
https://doi.org/10.1103/PhysRevB.84.235108
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1103/PhysRevX.4.031027
https://doi.org/10.1103/PhysRevX.4.031027
https://doi.org/10.1103/PhysRevX.4.031027
https://doi.org/10.1103/PhysRevX.4.031027
https://doi.org/10.1103/PhysRevLett.109.145301
https://doi.org/10.1103/PhysRevLett.109.145301
https://doi.org/10.1103/PhysRevLett.109.145301
https://doi.org/10.1103/PhysRevLett.109.145301
https://doi.org/10.1038/nphoton.2012.236
https://doi.org/10.1038/nphoton.2012.236
https://doi.org/10.1038/nphoton.2012.236
https://doi.org/10.1038/nphoton.2012.236
https://doi.org/10.1103/PhysRevLett.114.140401
https://doi.org/10.1103/PhysRevLett.114.140401
https://doi.org/10.1103/PhysRevLett.114.140401
https://doi.org/10.1103/PhysRevLett.114.140401
https://doi.org/10.1103/PhysRevB.93.155132
https://doi.org/10.1103/PhysRevB.93.155132
https://doi.org/10.1103/PhysRevB.93.155132
https://doi.org/10.1103/PhysRevB.93.155132
https://doi.org/10.1103/PhysRevA.92.053620
https://doi.org/10.1103/PhysRevA.92.053620
https://doi.org/10.1103/PhysRevA.92.053620
https://doi.org/10.1103/PhysRevA.92.053620
https://doi.org/10.1016/j.aop.2013.02.011
https://doi.org/10.1016/j.aop.2013.02.011
https://doi.org/10.1016/j.aop.2013.02.011
https://doi.org/10.1016/j.aop.2013.02.011
https://doi.org/10.1080/00018732.2015.1055918
https://doi.org/10.1080/00018732.2015.1055918
https://doi.org/10.1080/00018732.2015.1055918
https://doi.org/10.1080/00018732.2015.1055918
https://doi.org/10.1103/PhysRevA.58.2733
https://doi.org/10.1103/PhysRevA.58.2733
https://doi.org/10.1103/PhysRevA.58.2733
https://doi.org/10.1103/PhysRevA.58.2733
https://doi.org/10.1080/09500349808231241
https://doi.org/10.1080/09500349808231241
https://doi.org/10.1080/09500349808231241
https://doi.org/10.1080/09500349808231241
https://doi.org/10.1103/PhysRevLett.82.2417
https://doi.org/10.1103/PhysRevLett.82.2417
https://doi.org/10.1103/PhysRevLett.82.2417
https://doi.org/10.1103/PhysRevLett.82.2417
https://doi.org/10.1016/S0375-9601(99)00365-5
https://doi.org/10.1016/S0375-9601(99)00365-5
https://doi.org/10.1016/S0375-9601(99)00365-5
https://doi.org/10.1016/S0375-9601(99)00365-5
https://doi.org/10.1103/PhysRevLett.84.2525
https://doi.org/10.1103/PhysRevLett.84.2525
https://doi.org/10.1103/PhysRevLett.84.2525
https://doi.org/10.1103/PhysRevLett.84.2525
https://doi.org/10.1103/PhysRevLett.95.180501
https://doi.org/10.1103/PhysRevLett.95.180501
https://doi.org/10.1103/PhysRevLett.95.180501
https://doi.org/10.1103/PhysRevLett.95.180501
https://doi.org/10.1103/PhysRevLett.98.100504
https://doi.org/10.1103/PhysRevLett.98.100504
https://doi.org/10.1103/PhysRevLett.98.100504
https://doi.org/10.1103/PhysRevLett.98.100504
https://doi.org/10.1103/PhysRevLett.106.129901
https://doi.org/10.1103/PhysRevLett.106.129901
https://doi.org/10.1103/PhysRevLett.106.129901
https://doi.org/10.1103/PhysRevLett.102.080501
https://doi.org/10.1103/PhysRevLett.102.080501
https://doi.org/10.1103/PhysRevLett.102.080501
https://doi.org/10.1103/PhysRevLett.102.080501
https://doi.org/10.1038/nphys2252
https://doi.org/10.1038/nphys2252
https://doi.org/10.1038/nphys2252
https://doi.org/10.1038/nphys2252
https://doi.org/10.1016/S0370-1573(98)00022-2
https://doi.org/10.1016/S0370-1573(98)00022-2
https://doi.org/10.1016/S0370-1573(98)00022-2
https://doi.org/10.1016/S0370-1573(98)00022-2
https://doi.org/10.1103/PhysRevLett.101.103601
https://doi.org/10.1103/PhysRevLett.101.103601
https://doi.org/10.1103/PhysRevLett.101.103601
https://doi.org/10.1103/PhysRevLett.101.103601
https://doi.org/10.1103/PhysRevLett.107.073601
https://doi.org/10.1103/PhysRevLett.107.073601
https://doi.org/10.1103/PhysRevLett.107.073601
https://doi.org/10.1103/PhysRevLett.107.073601
https://doi.org/10.1103/PhysRevB.82.104522
https://doi.org/10.1103/PhysRevB.82.104522
https://doi.org/10.1103/PhysRevB.82.104522
https://doi.org/10.1103/PhysRevB.82.104522
https://doi.org/10.1103/PhysRevLett.106.060501
https://doi.org/10.1103/PhysRevLett.106.060501
https://doi.org/10.1103/PhysRevLett.106.060501
https://doi.org/10.1103/PhysRevLett.106.060501
https://doi.org/10.1103/PhysRevLett.110.107001
https://doi.org/10.1103/PhysRevLett.110.107001
https://doi.org/10.1103/PhysRevLett.110.107001
https://doi.org/10.1103/PhysRevLett.110.107001
https://doi.org/10.1063/1.4882646
https://doi.org/10.1063/1.4882646
https://doi.org/10.1063/1.4882646
https://doi.org/10.1063/1.4882646
https://doi.org/10.1103/PhysRevLett.98.177001
https://doi.org/10.1103/PhysRevLett.98.177001
https://doi.org/10.1103/PhysRevLett.98.177001
https://doi.org/10.1103/PhysRevLett.98.177001
https://doi.org/10.1126/science.1141324
https://doi.org/10.1126/science.1141324
https://doi.org/10.1126/science.1141324
https://doi.org/10.1126/science.1141324
https://doi.org/10.1103/PhysRevLett.98.057004
https://doi.org/10.1103/PhysRevLett.98.057004
https://doi.org/10.1103/PhysRevLett.98.057004
https://doi.org/10.1103/PhysRevLett.98.057004
https://doi.org/10.1126/science.1134388
https://doi.org/10.1126/science.1134388
https://doi.org/10.1126/science.1134388
https://doi.org/10.1126/science.1134388
https://doi.org/10.1103/PhysRevLett.104.177004
https://doi.org/10.1103/PhysRevLett.104.177004
https://doi.org/10.1103/PhysRevLett.104.177004
https://doi.org/10.1103/PhysRevLett.104.177004


CONTROL OVER FEW-PHOTON PULSES BY A TIME- . . . PHYSICAL REVIEW A 95, 043814 (2017)

Electrodynamics Using a Superconducting Charge Qubit with a
V-Shaped Energy Level Diagram, Phys. Rev. Lett. 106, 083601
(2011).

[40] Y. Chen, C. Neill, P. Roushan, N. Leung, M. Fang, R. Barends,
J. Kelly, B. Campbell, Z. Chen, B. Chiaro, A. Dunsworth, E.
Jeffrey, A. Megrant, J. Y. Mutus, P. J. J. O’Malley, C. M.
Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White,
M. R. Geller, A. N. Cleland, and J. M. Martinis, Qubit
Architecture with High Coherence and Fast Tunable Coupling,
Phys. Rev. Lett. 113, 220502 (2014).

[41] U. Peskin and N. Moiseyev, Time-dependent scattering theory
for time-periodic Hamiltonians: Formulation and complex-
scaling calculations of above-threshold-ionization spectra, Phys.
Rev. A 49, 3712 (1994).

[42] W. Li and L. E. Reichl, Floquet scattering through a time-
periodic potential, Phys. Rev. B 60, 15732 (1999).

[43] A. Emmanouilidou and L. E. Reichl, Floquet scattering
and classical-quantum correspondence in strong time-periodic
fields, Phys. Rev. A 65, 033405 (2002).

[44] M. V. Moskalets, Scattering Matrix Approach to Non-Stationary
Quantum Transport (Imperial College Press, London, 2011).

[45] M. Moskalets, Two-electron state from the Floquet scattering
matrix perspective, Phys. Rev. B 89, 045402 (2014).

[46] T. Bilitewski and N. R. Cooper, Scattering theory for Floquet-
Bloch states, Phys. Rev. A 91, 033601 (2015).

[47] M. Pletyukhov and V. Gritsev, Scattering of massless particles
in one-dimensional chiral channel, New J. Phys. 12, 095028
(2012).

043814-11

https://doi.org/10.1103/PhysRevLett.106.083601
https://doi.org/10.1103/PhysRevLett.106.083601
https://doi.org/10.1103/PhysRevLett.106.083601
https://doi.org/10.1103/PhysRevLett.106.083601
https://doi.org/10.1103/PhysRevLett.113.220502
https://doi.org/10.1103/PhysRevLett.113.220502
https://doi.org/10.1103/PhysRevLett.113.220502
https://doi.org/10.1103/PhysRevLett.113.220502
https://doi.org/10.1103/PhysRevA.49.3712
https://doi.org/10.1103/PhysRevA.49.3712
https://doi.org/10.1103/PhysRevA.49.3712
https://doi.org/10.1103/PhysRevA.49.3712
https://doi.org/10.1103/PhysRevB.60.15732
https://doi.org/10.1103/PhysRevB.60.15732
https://doi.org/10.1103/PhysRevB.60.15732
https://doi.org/10.1103/PhysRevB.60.15732
https://doi.org/10.1103/PhysRevA.65.033405
https://doi.org/10.1103/PhysRevA.65.033405
https://doi.org/10.1103/PhysRevA.65.033405
https://doi.org/10.1103/PhysRevA.65.033405
https://doi.org/10.1103/PhysRevB.89.045402
https://doi.org/10.1103/PhysRevB.89.045402
https://doi.org/10.1103/PhysRevB.89.045402
https://doi.org/10.1103/PhysRevB.89.045402
https://doi.org/10.1103/PhysRevA.91.033601
https://doi.org/10.1103/PhysRevA.91.033601
https://doi.org/10.1103/PhysRevA.91.033601
https://doi.org/10.1103/PhysRevA.91.033601
https://doi.org/10.1088/1367-2630/14/9/095028
https://doi.org/10.1088/1367-2630/14/9/095028
https://doi.org/10.1088/1367-2630/14/9/095028
https://doi.org/10.1088/1367-2630/14/9/095028



