16,799 research outputs found

    Quantitative mapping of rainfall rates over the oceans utilizing Nimbus-5 ESMR data

    Get PDF
    The electrically scanning microwave radiometer (ESMR) data from the Nimbus 5 satellite was used to deduce estimates of precipitation amount over the oceans. An atlas of the global oceanic rainfall was prepared and the global rainfall maps analyzed and related to available ground truth information as well as to large scale processes in the atmosphere. It was concluded that the ESMR system provides the most reliable and direct approach yet known for the estimation of rainfall over sparsely documented, wide oceanic regions

    Effects of the R-parity violation in the minimal supersymmetric standard model on dilepton pair production at the CERN LHC

    Get PDF
    We investigate in detail the effects of the R-parity lepton number violation in the minimal supersymmetric standard model (MSSM) on the parent process ppe+e+Xpp \to e^+ e^- + X at the CERN Large Hadron Collider (LHC). The numerical comparisons between the contributions of the R-parity violating effects to the parent process via the Drell-Yan subprocess and the gluon-gluon fusion are made. We find that the R-violating effects on e+ee^+ e^- pair production at the LHC could be significant. The results show that the cross section of the e+e e^+ e^- pair productions via gluon-gluon collision at the LHC can be of the order of 10210^2 fb, and this subprocess maybe competitive with the production mechanism via the Drell-Yan subprocess. We give also quantitatively the analysis of the effects from both the mass of sneutrino and coupling strength of the R-parity violating interactions.Comment: 18 pages, 10 figures, accepted by Phys. Rev.

    Prospects for joint radio telescope and gravitational wave searches for astrophysical transients

    Full text link
    The radio skies remain mostly unobserved when it comes to transient phenomena. The direct detection of gravitational waves will mark a major milestone of modern astronomy, as an entirely new window will open on the universe. Two apparently independent phenomena can be brought together in a coincident effort that has the potential to boost both searches. In this paper we will outline the scientific case that stands behind these future joint observations and will describe the methods that might be used to conduct the searches and analyze the data. The targeted sources are binary systems of compact objects, known to be strong candidate sources for gravitational waves. Detection of transients coincident in these two channels would be a significant smoking gun for first direct detection of gravitational waves, and would open up a new field for characterization of astrophysical transients involving massive compact objects.Comment: 12 pages, Amaldi 8 Conference (New York, 2009) proceedings pape

    Circular Orbits in Einstein-Gauss-Bonnet Gravity

    Get PDF
    The stability under radial and vertical perturbations of circular orbits associated to particles orbiting a spherically symmetric center of attraction is study in the context of the n-dimensional: Newtonian theory of gravitation, Einstein's general relativity, and Einstein-Gauss-Bonnet theory of gravitation. The presence of a cosmological constant is also considered. We find that this constant as well as the Gauss-Bonnet coupling constant are crucial to have stability for n>4n>4.Comment: 11 pages, 4 figs, RevTex, Phys. Rev. D, in pres

    Study of Space Station propulsion system resupply and repair Final report

    Get PDF
    Resupply and repair capabilities for orbital space station bipropellant propulsion syste

    Non-transversality of the gluon polarization tensor in a chromomagnetic background

    Full text link
    We investigate the question about the transversality of the gluon polarization tensor in a homogeneous chromomagnetic background field. We re-derive the non transversality known from a pure one loop calculation using the Slavnov-Taylor identities. In addition we generalize the procedure to arbitrary gauge fixing parameter ξ\xi and calculate the ξ\xi-dependent part of the polarization tensor.Comment: subm. to TM

    Jet Energy Density in Hadron-Hadron Collisions at High Energies

    Full text link
    The average particle multiplicity density dN/deta is the dynamical quantity which reflects some regularities of particle production in low-pT range. The quantity is an important ingredient of z-scaling. Experimental results on charged particle density are available for pp, pA and AA collisions while experimental properties of the jet density are still an open question. The goal of this work is to find the variable which will reflect the main features of the jet production in low transverse energy range and play the role of the scale factor for the scaling function psi(z) and variable z in data z-presentation. The appropriate candidate is the variable we called "scaled jet energy density". Scaled jet energy density is the probability to have a jet with defined ET in defined xT and pseudorapidity regions. The PYTHIA6.2 Monte Carlo generator is used for calculation of scaled jet energy density in proton-proton collisions over a high energy range (sqrt s = 200-14000 GeV) and at eta = 0. The properties of the new variable are discussed and sensitivity to "physical scenarios" applied in the standard Monte Carlo generator is noted. The results of scaled jet energy density at LHC energies are presented and compared with predictions based on z-scaling.Comment: 11 pages, LaTeX, 8 figures, Presented at the XVII International Baldin Seminar on High Energy Physics Problems "Relativistic Nuclear Physics & Quantum Chromodynamics", Dubna, Russia, September 27 - October 2, 200

    Energy density and pressure of long wavelength gravitational waves

    Get PDF
    Inflation leads us to expect a spectrum of gravitational waves (tensor perturbations) extending to wavelengths much bigger than the present observable horizon. Although these gravity waves are not directly observable, the energy density that they contribute grows in importance during the radiation- and dust-dominated ages of the universe. We show that the back reaction of tensor perturbations during matter domination is limited from above, since gravitational waves of wavelength λ\lambda have a share of the total energy density Δρ(λ)/ρ\Delta \rho(\lambda)/\rho during matter domination that is at most equal to the share of the total energy density that they had when the mode λ\lambda exited the Hubble radius H1H^{-1} during inflation. This work is to be contrasted to that of Sahni, who analyzed the energy density of gravity waves only insofar as their wavelengths are smaller than H1H^{-1}. Such a cut-off in the spectral energy of gravity waves leads to the breakdown of energy conservation, and we show that this anomaly is eliminated simply by taking into account the energy density and pressure of long wavelength gravitational waves as well as short wavelength ones.Comment: Updated one reference; 17 pages, no figure
    corecore