28 research outputs found

    Oral Methylthioadenosine Administration Attenuates Fibrosis and Chronic Liver Disease Progression in Mdr2−/− Mice

    Get PDF
    BACKGROUND: Inflammation and fibrogenesis are directly related to chronic liver disease progression, including hepatocellular carcinoma (HCC) development. Currently there are few therapeutic options available to inhibit liver fibrosis. We have evaluated the hepatoprotective and anti-fibrotic potential of orally-administered 5'-methylthioadenosine (MTA) in Mdr2(-/-) mice, a clinically relevant model of sclerosing cholangitis and spontaneous biliary fibrosis, followed at later stages by HCC development. METHODOLOGY: MTA was administered daily by gavage to wild type and Mdr2(-/-) mice for three weeks. MTA anti-inflammatory and anti-fibrotic effects and potential mechanisms of action were examined in the liver of Mdr2(-/-) mice with ongoing fibrogenesis and in cultured liver fibrogenic cells (myofibroblasts). PRINCIPAL FINDINGS: MTA treatment reduced hepatomegaly and liver injury. α-Smooth muscle actin immunoreactivity and collagen deposition were also significantly decreased. Inflammatory infiltrate, the expression of the cytokines IL6 and Mcp-1, pro-fibrogenic factors like TGFβ2 and tenascin-C, as well as pro-fibrogenic intracellular signalling pathways were reduced by MTA in vivo. MTA inhibited the activation and proliferation of isolated myofibroblasts and down-regulated cyclin D1 gene expression at the transcriptional level. The expression of JunD, a key transcription factor in liver fibrogenesis, was also reduced by MTA in activated myofibroblasts. CONCLUSIONS/SIGNIFICANCE: Oral MTA administration was well tolerated and proved its efficacy in reducing liver inflammation and fibrosis. MTA may have multiple molecular and cellular targets. These include the inhibition of inflammatory and pro-fibrogenic cytokines, as well as the attenuation of myofibroblast activation and proliferation. Downregulation of JunD and cyclin D1 expression in myofibroblasts may be important regarding the mechanism of action of MTA. This compound could be a good candidate to be tested for the treatment of (biliary) liver fibrosis

    New insights into the regulation of bile acids synthesis during the early stages of liver regeneration: A human and experimental study

    Get PDF
    Background and aims: Liver regeneration is essential for the preservation of homeostasis and survival. Bile acids (BAs)-mediated signaling is necessary for liver regeneration, but BAs levels need to be carefully controlled to avoid hepatotoxicity. We studied the early response of the BAs-fibroblast growth factor 19 (FGF19) axis in healthy individuals undergoing hepatectomy for living donor liver transplant. We also evaluated BAs synthesis in mice upon partial hepatectomy (PH) and acute inflammation, focusing on the regulation of cytochrome-7A1 (CYP7A1), a key enzyme in BAs synthesis from cholesterol. Methods: Serum was obtained from twelve human liver donors. Mice underwent 2/3-PH or sham-operation. Acute inflammation was induced with bacterial lipopolysaccharide (LPS) in mice fed control or antoxidant-supplemented diets. BAs and 7α-hydroxy-4-cholesten-3-one (C4) levels were measured by HPLC-MS/MS; serum FGF19 by ELISA. Gene expression and protein levels were analyzed by RT-qPCR and western-blot. Results: Serum BAs levels increased after PH. In patients with more pronounced hypercholanemia, FGF19 concentrations transiently rose, while C4 levels (a readout of CYP7A1 activity) dropped 2 h post-resection in all cases. Serum BAs and C4 followed the same pattern in mice 1 h after PH, but C4 levels also dropped in sham-operated and LPS-treated animals, without marked changes in CYP7A1 protein levels. LPS-induced serum C4 decline was attenuated in mice fed an antioxidant-supplemented diet. Conclusions: In human liver regeneration FGF19 upregulation may constitute a protective response from BAs excess during liver regeneration. Our findings suggest the existence of post-translational mechanisms regulating CYP7A1 activity, and therefore BAs synthesis, independent from CYP7A1/Cyp7a1 gene transcription.Peer reviewe

    DNA methylation and histone acetylation of rat methionine adenosyltransferase 1 A and 2 A genes is tissue-specific

    No full text
    Abstract Methionine adenosyltransferase (MAT) catalyzes the biosynthesis of S-adenosylmethionine (AdoMet). In mammals MAT activity derives from two separate genes which display a tissue-speci®c pattern of expression. While MAT1A is expressed only in the adult liver, MAT2A is expressed in non-hepatic tissues. The mechanisms behind the selective expression of these two genes are not fully understood. In the present report we have evaluated MAT1A and MAT2A methylation in liver and in other tissues, such as kidney, by methylationsensitive restriction enzyme digestion of genomic DNA. Our data indicate that MAT1A is hypomethylated in liver and hypermethylated in non-expressing tissues. The opposite situation is found for MAT2A. Additionally, histones associated to MAT1A and MAT2A genes showed enhanced levels of acetylation in expressing tissues (two-fold for MAT1A and 3.5-fold for MAT2A liver and kidney respectively). These observations support a role for chromatin structure and its modi®cation in the tissue-speci®c expression of both MAT genes.

    SRF IS A NEW PLAYER INVOLVED IN LIVER REGENERATION

    No full text
    International audienceVarious immediate early genes (IEGs) upregulated during the early process of liver regeneration are transcriptional targets of the serum response factor (SRF). We show here that the expression of SRF is rapidly induced in rodent liver after partial hepatectomy. Because the inactivation of the SRF gene in mice is embryonic lethal, the in vivo role of SRF in liver regeneration after partial hepatectomy was analyzed in mutant mice conditionally deleted for SRF in the liver. We demonstrate that SRF is not an essential factor for liver ontogenesis. However, adult mutant mice show impaired liver regeneration after partial hepatectomy, associated with a blunted upregulation of various SRF target IEGs. In conclusion, our work suggests that SRF is an early response transcription factor that may contribute to the initial phases of liver regeneration through its activation of IEGs
    corecore