161 research outputs found
[ A ([18]crown‐6)] 2 [Pt(CO) 3 ] ⋅ 10 NH 3 ( A =K, Rb) – A crystal structure containing the long postulated [Pt(CO) 3 ] 2−
The compound [A([18]crown-6]2[Pt(CO)3] ⋅ 10 NH3 (A=K, Rb, [18]crown- 6=1,4,7,10,13,16-Hexaoxacyclooctadecane) containing the anion [Pt(CO)3]2− was the unexpected result of a reaction between K6Rb6Ge17, Pt(CO)2(PPh3)2, [18]crown-6 and [2.2.2]-crypt. This compound represents the first example of a mononuclear carbonyl platinate and expands the list of known group 10 carbonyl metallates. The central anion has a trigonal planar shape with an approximate D3h symmetry. Theoretical investigations confirm the trigonal planar structure of the carbonylate and give insight into the electronic structure. The calculations reveal a strong charge density at the central platinum atom, while the HOMO shows a dispersion of the residual electrons under and over the carbonyl plane
The Role of Different Alkali Metals in the A15Tl27 Type Structure and the Synthesis and X-ray Structure Analysis of a New Substitutional Variant Cs14.53Tl28.4
Alkali metal thallides have been known since the report of E. Zintl on NaTl in 1932. Subsequently, binary and ternary thallides of alkali metals have been characterized. At an alkali metal proportion of approximately 33% (A:Tl~1:2, A = alkali metal), three different unique type structures are reported: K49Tl108, Rb17Tl41 and A15Tl27 (A = Rb, Cs). Whereas Rb17Tl41 and K49Tl108 feature a three-dimensional sublattice of Tl atoms, the A15Tl27 structure type includes isolated Tl11 clusters as well as two-dimensional Tl-layers. This unique arrangement is only known so far when the heavier alkali metals Rb and Cs are included. In our contribution, we present single-crystal X-ray structure analyses of new ternary and quaternary compounds of the A15Tl27 type structure, which include different amounts of potassium. The crystal structures allow for the discussion of the favored alkali metal for each of the four Wyckoff positions and clearly demonstrate alkali metal dependent site preferences. Thereby, the compound Cs2.27K12.73Tl27 unambiguously proves the possibility of a potassium-rich A15Tl27 phase, even though a small amount of cesium appears to be needed for the stabilization of the latter structure type. Furthermore, we also present two compounds that show an embedding of Tl instead of alkali metal into the two-dimensional substructure, being equivalent to the formal oxidation of the latter. Cs14.53Tl28.4 represents the binary compound with the so far largest proportion of incorporated Tl in the structure type A15Tl27
An intense source for cold cluster ions of a specific composition
Funding Information: This work was supported by EFRE (K-Regio project FAENOMENAL, Grant No. EFRE 2016-4) and the Austrian Science Fund FWF (Project No. P31149, I4130). This work was also supported by Fundação para a Ciência e a Tecnologia (FCT-MCTES), Radiation Biology and Biophysics Doctoral Training Programme (RaBBiT, PD/00193/2012); Applied Molecular Biosciences Unit - UCIBIO (UIDB/04378/2020) and CEFITEC Unit (UIDB/00068/2020); and scholarship Grant No. PD/BD/114447/2016 to J.A., F. Zappa acknowledges support from the Brazilian agency CNPq. K.v.H. kindly acknowledges the award of a LFUI guest professorship.The demand for nanoscale materials of ultra-high purity and narrow size distribution is addressed. Clusters of Au, C60, H2O, and serine are produced inside helium nanodroplets using a combination of ionization, mass filtering, collisions with atomic or molecular vapor, and electrostatic extraction, in a specific and novel sequence. The helium droplets are produced in an expansion of cold helium gas through a nozzle into vacuum. The droplets are ionized by electron bombardment and subjected to a mass filter. The ionic and mass-selected helium droplets are then guided through a vacuum chamber filled with atomic or molecular vapor where they collide and "pick up" the vapor. The dopants then agglomerate inside the helium droplets around charge centers to singly charged clusters. Evaporation of the helium droplets is induced by collisions in a helium-filled radio frequency (RF)-hexapole, which liberates the cluster ions from the host droplets. The clusters are analyzed with a time-of-flight mass spectrometer. It is demonstrated that using this sequence, the size distribution of the dopant cluster ions is distinctly narrower compared to ionization after pickup. Likewise, the ion cluster beam is more intense. The mass spectra show, as well, that ion clusters of the dopants can be produced with only few helium atoms attached, which will be important for messenger spectroscopy. All these findings are important for the scientific research of clusters and nanoscale materials in general.publishersversionpublishe
NMR‐Spectroscopic Detection of an Elusive Protonated and Coinage Metalated Silicide [NHC Dipp Cu(η 4 ‐Si 9 )H] 2− in Solution
A simultaneously protonated and functionalized silicide cluster [NHCDippCu(η4-Si9)H]2− was detected and characterized in liquid ammonia by NMR spectroscopy. Key NMR results were corroborated by theoretical calculations. 1H-NMR line-widths at variable temperatures revealed that proton hopping in the metalated complex [NHCDippCu(η4-Si9)H]2− is less pronounced than in the non-complexed silicide [HSi9]3−. Besides [HSi9]3− and [NHCDippCu(η4-Si9)H]2− also the unprotonated analogous cluster [NHCDippCu(η4-Si9)]3− was detected in solution. In addition, a new 29Si-NMR signal was obtained in the course of 29Si-NMR studies that we assigned to [NHCDippCu(η4-Si9)]3−. The isolation of crystals of (K[2.2.2]-crypt)2K0.48Rb3.52[NHCDippCu(η4-Si9)]2 prove the availability of the non-protonated NHCDippCu(η4-Si9) fragment in solution. To the best of our knowledge the detection of [NHCDippCu(η4-Si9)H]2− represents the first case of a protonated and coinage metalated group 14 Zintl cluster in solution so far
Complete cardiac regeneration in a mouse model of myocardial infarction
Cardiac remodeling and subsequent heart failure remain critical issues after myocardial infarction despite improved treatment and reperfusion strategies. Recently, complete cardiac regeneration has been demonstrated in fish and newborn mice following resection of the cardiac apex. However, it remained entirely unclear whether the mammalian heart can also completely regenerate following a complex cardiac ischemic injury. We established a protocol to induce a severe heart attack in one-day-old mice using left anterior descending artery (LAD) ligation. LAD ligation triggered substantial cardiac injury in the left ventricle defined by Caspase 3 activation and massive cell death. Ischemia-induced cardiomyocyte death was also visible on day 4 after LAD ligation. Remarkably, 7 days after the initial ischemic insult, we observed complete cardiac regeneration without any signs of tissue damage or scarring. This tissue regeneration translated into long-term normal heart functions as assessed by echocardiography. In contrast, LAD ligations in 7-day-old mice resulted in extensive scarring comparable to adult mice, indicating that the regenerative capacity for complete cardiac healing after heart attacks can be traced to the first week after birth. RNAseq analyses of hearts on day 1, day 3, and day 10 and comparing LAD-ligated and sham-operated mice surprisingly revealed a transcriptional programme of major changes in genes mediating mitosis and cell division between days 1, 3 and 10 postnatally and a very limited set of genes, including genes regulating cell cycle and extracellular matrix synthesis, being differentially regulated in the regenerating hearts. We present for the first time a mammalian model of complete cardiac regeneration following a severe ischemic cardiac injury. This novel model system provides the unique opportunity to uncover molecular and cellular pathways that can induce cardiac regeneration after ischemic injury, findings that one day could be translated to human heart attack patients
Local immune regulation of mucosal inflammation by tacrolimus
Purpose: Tacrolimus is a potent immunomodulator that is effective in the treatment of inflammatory bowel disease (IBD). However, potential toxicity and systemic effects with oral intake limit its use. Local tacrolimus treatment is effective in a subgrou
Dependence of cancer cell adhesion kinetics on integrin ligand surface density measured by a high-throughput label-free resonant waveguide grating biosensor
A novel high-throughput label-free resonant waveguide grating (RWG) imager biosensor, the Epic® BenchTop (BT), was utilized to determine the dependence of cell spreading kinetics on the average surface density (vRGD) of integrin ligand RGD-motifs. vRGD was tuned over four orders of magnitude by co-adsorbing the biologically inactive PLL-g-PEG and the RGD-functionalized PLL-g-PEG-RGD synthetic copolymers from their mixed solutions onto the sensor surface. Using highly adherent human cervical tumor (HeLa) cells as a model system, cell adhesion kinetic data of unprecedented quality were obtained. Spreading kinetics were fitted with the logistic equation to obtain the spreading rate constant (r) and the maximum biosensor response (Δλmax), which is assumed to be directly proportional to the maximum spread contact area (Amax). r was found to be independent of the surface density of integrin ligands. In contrast, Δλmax increased with increasing RGD surface density until saturation at high densities. Interpreting the latter behavior with a simple kinetic mass action model, a 2D dissociation constant of 1753 ± 243 μm−2 (corresponding to a 3D dissociation constant of ~30 μM) was obtained for the binding between RGD-specific integrins embedded in the cell membrane and PLL-g-PEG-RGD. All of these results were obtained completely noninvasively without using any labels
Landscape Ecotoxicology of Coho Salmon Spawner Mortality in Urban Streams
In the Pacific Northwest of the United States, adult coho salmon (Oncorhynchus kisutch) returning from the ocean to spawn in urban basins of the Puget Sound region have been prematurely dying at high rates (up to 90% of the total runs) for more than a decade. The current weight of evidence indicates that coho deaths are caused by toxic chemical contaminants in land-based runoff to urban streams during the fall spawning season. Non-point source pollution in urban landscapes typically originates from discrete urban and residential land use activities. In the present study we conducted a series of spatial analyses to identify correlations between land use and land cover (roadways, impervious surfaces, forests, etc.) and the magnitude of coho mortality in six streams with different drainage basin characteristics. We found that spawner mortality was most closely and positively correlated with the relative proportion of local roads, impervious surfaces, and commercial property within a basin. These and other correlated variables were used to identify unmonitored basins in the greater Seattle metropolitan area where recurrent coho spawner die-offs may be likely. This predictive map indicates a substantial geographic area of vulnerability for the Puget Sound coho population segment, a species of concern under the U.S. Endangered Species Act. Our spatial risk representation has numerous applications for urban growth management, coho conservation, and basin restoration (e.g., avoiding the unintentional creation of ecological traps). Moreover, the approach and tools are transferable to areas supporting coho throughout western North America
Does the sole description of a tax authority affect tax evasion? The impact of described coercive and legitimate power.
Following the classic economic model of tax evasion, taxpayers base their tax decisions on economic determinants, like fine rate and audit probability. Empirical findings on the relationship between economic key determinants and tax evasion are inconsistent and suggest that taxpayers may rather rely on their beliefs about tax authority’s power. Descriptions of the tax authority’s power may affect taxpayers’ beliefs and as such tax evasion. Experiment 1 investigates the impact of fines and beliefs regarding tax authority’s power on tax evasion. Experiments 2-4 are conducted to examine the effect of varying descriptions about a tax authority’s power on participants’ beliefs and respective tax evasion. It is investigated whether tax evasion is influenced by the description of an authority wielding coercive power (Experiment 2), legitimate power (Experiment 3), and coercive and legitimate power combined (Experiment 4). Further, it is examined whether a contrast of the description of power (low to high power; high to low power) impacts tax evasion (Experiments 2-4). Results show that the amount of fine does not impact tax payments, whereas participants’ beliefs regarding tax authority’s power significantly shape compliance decisions. Descriptions of high coercive power as well as high legitimate power affect beliefs about tax authority’s power and positively impact tax honesty. This effect still holds if both qualities of power are applied simultaneously. The contrast of descriptions has little impact on tax evasion. The current study indicates that descriptions of the tax authority, e.g., in information brochures and media reports, have more influence on beliefs and tax payments than information on fine rates. Methodically, these considerations become particularly important when descriptions or vignettes are used besides objective information
- …