9,159 research outputs found

    Learning what matters - Sampling interesting patterns

    Get PDF
    In the field of exploratory data mining, local structure in data can be described by patterns and discovered by mining algorithms. Although many solutions have been proposed to address the redundancy problems in pattern mining, most of them either provide succinct pattern sets or take the interests of the user into account-but not both. Consequently, the analyst has to invest substantial effort in identifying those patterns that are relevant to her specific interests and goals. To address this problem, we propose a novel approach that combines pattern sampling with interactive data mining. In particular, we introduce the LetSIP algorithm, which builds upon recent advances in 1) weighted sampling in SAT and 2) learning to rank in interactive pattern mining. Specifically, it exploits user feedback to directly learn the parameters of the sampling distribution that represents the user's interests. We compare the performance of the proposed algorithm to the state-of-the-art in interactive pattern mining by emulating the interests of a user. The resulting system allows efficient and interleaved learning and sampling, thus user-specific anytime data exploration. Finally, LetSIP demonstrates favourable trade-offs concerning both quality-diversity and exploitation-exploration when compared to existing methods.Comment: PAKDD 2017, extended versio

    A model for the dynamics of extensible semiflexible polymers

    Full text link
    We present a model for semiflexible polymers in Hamiltonian formulation which interpolates between a Rouse chain and worm-like chain. Both models are realized as limits for the parameters. The model parameters can also be chosen to match the experimental force-extension curve for double-stranded DNA. Near the ground state of the Hamiltonian, the eigenvalues for the longitudinal (stretching) and the transversal (bending) modes of a chain with N springs, indexed by p, scale as lambda_lp ~ (p/N)^2 and lambda_tp ~ p^2(p-1)^2/N^4 respectively for small p. We also show that the associated decay times tau_p ~ (N/p)^4 will not be observed if they exceed the orientational time scale tau_r ~ N^3 for an equally-long rigid rod, as the driven decay is then washed out by diffusive motion.Comment: 28 pages, 2 figure

    Crossover behavior for long reptating polymers

    Full text link
    We analyze the Rubinstein-Duke model for polymer reptation by means of density matrix renormalization techniques. We find a crossover behavior for a series of quantities as function of the polymer length. The crossover length may become very large if the mobility of end groups is small compared to that of the internal reptons. Our results offer an explanation to a controversy between theory, experiments and simulations on the leading and subleading scaling behavior of the polymer renewal time and diffusion constant.Comment: 4 Pages, RevTeX, and 4 PostScript figures include

    Synaesthesia: A cross-cultural pilot

    No full text
    Synaesthesia is a condition in which stimulation of one sensory modality (e.g. hearing) causes additional experiences in a second, unstimulated modality (e.g. seeing colours). The goal of this task is to explore the types (and incidence) of synaesthesia in different cultures. Two simple tests can ascertain the existence of synaesthesia in your community

    Особливості формування етнічного складу селянської верстви Степового Побужжя

    Get PDF
    In this short paper we sketch a brief introduction to our Krimp algorithm. Moreover, we briefly discuss some of the large body of follow up research. Pointers to the relevant papers are provided in the bibliography

    Atom lithography without laser cooling

    Get PDF
    Using direct-write atom lithography, Fe nanolines are deposited with a pitch of 186 nm, a full width at half maximum (FWHM) of 50 nm, and a height of up to 6 nm. These values are achieved by relying on geometrical collimation of the atomic beam, thus without using laser collimation techniques. This opens the way for applying direct-write atom lithography to a wide variety of elements.Comment: 7 pages, 11 figure

    Total energies from variational functionals of the Green function and the renormalized four-point vertex

    Get PDF
    We derive variational expressions for the grand potential or action in terms of the many-body Green function GG which describes the propagation of particles and the renormalized four-point vertex Γ\Gamma which describes the scattering of two particles in many-body systems. The main ingredient of the variational functionals is a term we denote as the Ξ\Xi-functional which plays a role analogously to the usual Φ\Phi-functional studied by Baym (G.Baym, Phys.Rev. 127, 1391 (1962)) in connection with the conservation laws in many-body systems. We show that any Ξ\Xi-derivable theory is also Φ\Phi-derivable and therefore respects the conservation laws. We further set up a computational scheme to obtain accurate total energies from our variational functionals without having to solve computationally expensive sets of self-consistent equations. The input of the functional is an approximate Green function G~\tilde{G} and an approximate four-point vertex Γ~\tilde{\Gamma} obtained at a relatively low computational cost. The variational property of the functional guarantees that the error in the total energy is only of second order in deviations of the input Green function and vertex from the self-consistent ones that make the functional stationary. The functionals that we will consider for practical applications correspond to infinite order summations of ladder and exchange diagrams and are therefore particularly suited for applications to highly correlated systems. Their practical evaluation is discussed in detail.Comment: 21 pages, 10 figures. Physical Review B (accepted
    corecore