63,672 research outputs found

    A charging model for three-axis stabilized spacecraft

    Get PDF
    A charging model was developed for geosynchronous, three-axis stabilized spacecraft when under the influence of a geomagnetic substorm. The differential charging potentials between the thermally coated or blanketed outer surfaces and metallic structure of a spacecraft were determined when the spacecraft was immersed in a dense plasma cloud of energetic particles. The spacecraft-to-environment interaction was determined by representing the charged particle environment by equivalent current source forcing functions and by representing the spacecraft by its electrically equivalent circuit with respect to the plasma charging phenomenon. The charging model included a sun/earth/spacecraft orbit model that simulated the sum illumination conditions of the spacecraft outer surfaces throughout the orbital flight on a diurnal as well as a seasonal basis. Transient and steady-state numerical results for a three-axis stabilized spacecraft are presented

    Space shuttle low pressure auxiliary propulsion subsystem design definition Subtask B report

    Get PDF
    Space shuttle low pressure, hydrogen oxygen auxiliary propulsion subsystem preliminary desig

    Near-earth thermal environmental criteria study

    Get PDF
    A study was made to determine improved values and definitions to be used for thermal environmental design parameters for a spacecraft in near-earth orbit. An algorithm was used to derive a total earth thermal radiation based on a mathematical relationship. Several albedo and earth thermal radiation grid maps were produced on seven track digital magnetic tape. Each map contained the values obtained during a 24 hour period over the entire earth. The output statistics are summarized, and the data processing program is described

    Cooperative Chiral Order in Copolymers of Chiral and Achiral Units

    Full text link
    Polyisocyanates can be synthesized with chiral and achiral pendant groups distributed randomly along the chains. The overall chiral order, measured by optical activity, is strongly cooperative and depends sensitively on the concentration of chiral pendant groups. To explain this cooperative chiral order theoretically, we map the random copolymer onto the one-dimensional random-field Ising model. We show that the optical activity as a function of composition is well-described by the predictions of this theory.Comment: 13 pages, including 3 postscript figures, uses REVTeX 3.0 and epsf.st

    A Curious Truncation of N=4 Yang-Mills

    Full text link
    The coupling constant dependence of correlation functions of BPS operators in N=4 Yang-Mills can be expressed in terms of integrated correlation functions. We approximate these integrated correlators by using a truncated OPE expansion. This leads to differential equations for the coupling dependence. When applied to a particular sixteen point correlator, the coupling dependence we find agrees with the corresponding amplitude computed via the AdS/CFT correspondence. We conjecture that this truncation becomes exact in the large N and large 't Hooft coupling limit.Comment: 10 pages, LaTeX; additional comments, added reference

    Supersymmetric Wilson Loops in IIB Matrix Model

    Get PDF
    We show that the supersymmetric Wilson loops in IIB matrix model give a transition operator from reduced supersymmetric Yang-Mills theory to supersymmetric space-time theory. In comparison with Green-Schwarz superstring we identify the supersymmetric Wilson loops with the asymptotic states of IIB superstring. It is pointed out that the supersymmetry transformation law of the Wilson loops is the inverse of that for the vertex operators of massless modes in the U(N) open superstring with Dirichlet boundary condition.Comment: 10 pages, Latex, minor typos correcte

    Newtonian and Relativistic Cosmologies

    Full text link
    Cosmological N-body simulations are now being performed using Newtonian gravity on scales larger than the Hubble radius. It is well known that a uniformly expanding, homogeneous ball of dust in Newtonian gravity satisfies the same equations as arise in relativistic FLRW cosmology, and it also is known that a correspondence between Newtonian and relativistic dust cosmologies continues to hold in linearized perturbation theory in the marginally bound/spatially flat case. Nevertheless, it is far from obvious that Newtonian gravity can provide a good global description of an inhomogeneous cosmology when there is significant nonlinear dynamical behavior at small scales. We investigate this issue in the light of a perturbative framework that we have recently developed, which allows for such nonlinearity at small scales. We propose a relatively straightforward "dictionary"---which is exact at the linearized level---that maps Newtonian dust cosmologies into general relativistic dust cosmologies, and we use our "ordering scheme" to determine the degree to which the resulting metric and matter distribution solve Einstein's equation. We find that Einstein's equation fails to hold at "order 1" at small scales and at "order ϵ\epsilon" at large scales. We then find the additional corrections to the metric and matter distribution needed to satisfy Einstein's equation to these orders. While these corrections are of some interest in their own right, our main purpose in calculating them is that their smallness should provide a criterion for the validity of the original dictionary (as well as simplified versions of this dictionary). We expect that, in realistic Newtonian cosmologies, these additional corrections will be very small; if so, this should provide strong justification for the use of Newtonian simulations to describe relativistic cosmologies, even on scales larger than the Hubble radius.Comment: 35 pages; minor change

    Gravity as elasticity of spacetime: a paradigm to understand horizon thermodynamics and cosmological constant

    Full text link
    It is very likely that the quantum description of spacetime is quite different from what we perceive at large scales, l≫(Gℏ/c3)1/2l\gg (G\hbar/c^3)^{1/2}. The long wave length description of spacetime, based on Einstein's equations, is similar to the description of a continuum solid made of a large number of microscopic degrees of freedom. This paradigm provides a novel interpretation of coordinate transformations as deformations of "spacetime solid" and allows one to obtain Einstein's equations as a consistency condition in the long wavelength limit. The entropy contributed by the microscopic degrees of freedom reduces to a pure surface contribution when Einstein's equations are satisfied. The horizons arises as "defects" in the "spacetime solid" (in the sense of well defined singular points) and contributes an entropy which is one quarter of the horizon area. Finally, the response of the microstructure to vacuum energy leads to a near cancellation of the cosmological constant, leaving behind a tiny fluctuation which matches with the observed value.Comment: This essay received an ``honorable mention'' in the 2004 Essay Competition of the Gravity Research Foundation; accepted for publication in IJMP
    • …
    corecore