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Abstract ]

A charging rrodel isdeveloped _¢)rgeosynchronbus, three-axisstabilized
spacecraftwhen tnder the influenceofa geomagnetic sUbstorm. The differential
chargingpotentlas between the thermaity coatedor blanketedouter surfacesand
metallicstru_turtofa spacecraftare determined when the spacecraftisimmersed
!na dense plasma cloud ofenergeticparticles. The spacecraft-,to-environment
interactionisdetermined by representingthecharged particleenvironment by
equz_alentcurrent source forcingfUnctionsand by representingthe spacecraftby
its electrically equivalent circuit wlth r_spect to the plasma Char_ing phenomenon.

i The chargin_ model includes a sun/earth/spacecrtth orbit model that simulates the
sun illttmlna-(ion conditions o_ the spacecraR outer sut'faces th/-oughout the orbital
flighton a dlul-naias wellas a seasonalbasis. Transientand steady-statenumer-
icalresultsfora three-axisstabillzedspacecraftare preserited.
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I.I._'rlIODI!CTION
i' '

I_ Recent data from the geosy_chz'ofiousorbltihgNASA satellitesATS-5 and

!_ ATS._I, 2,.3has indicatedthatthe su_f_tceof thesesatellitescan charge to hundreds

,'i' of voltswhen insunlightand thousandsof volts(Up to -I0 RV) wheriinecllpse.

=;_" Data transmitted_r0m thesesatellitesduring thesecharging event,_has indicated

(: the existenceot transientfluxesofenergeticparticles. Ithas been suggested4

I:' that these cloud_ of energetic particles are injected into the lJcaLmidnight-to-

_' dawn regionof"the geosyrichronousaltitudeduringgeomagnetic substorm activity.

_i Consequerttly0durln_a geomagnetic substorm, spacecraftat altitudesgreaterthan.-
_: threeEarth radii,in the.localtime sector from justbefore midnightto pastdawn,

=o: occasionallywillencounterand be immersed in.adense plasma cloud ofenergetic

-_:_: particles.,ithas been furtherpostulatedthatthischarged particleenvironment is

:ii_, the major cause of spacecraftcharging. That is, in the steady-state,every isolated

__' partOf a spacecraftimmersed in thespace environmentalplasma willcome into

electricalequilibriumby developingsurfacecharges of the proper signand magni-.

!_:i: tudesuch thatthe net current - representedby the depositionand releaseo_

_, charged particlesfrom the surfaceof the spacecraft- iszero. The equilibrium

_;_ potentialof the surfaceof the spacecraftisthe potentialdifferencebetween the

_:, surfaceand ambient plasma sheath. The most importatttcontributorstothe equil-
_" ibratloncurrentsare the primary plasma electronaridprotonarrivalsatthe sur-

_" faceand thephotoelectrorisreleased when sunlightilluminatesthesurface. Ln
#,

_i: additiot b the _ontributiOns o_ set=ondary electrons released from the surface under

:_ primary proton or electronimpact and possibleelectronreattractlonto thesurface,

i_:.' are alsoSignificantand must be considered ina complete analysisof the problem.

.__ In the coincidence with the geomagnetic substorm activity in this local time
_ quadrant, isthe occurrence of anomalous eventson-board satellitesingeosyn-

_- chronous orbitwhen immersed inthe stlbstormplasma. SpeCifically,anomalous

_i, behavior experiehcedby several satelliteshas included5 controlcl_-cultswitching0

_!i: power system f_ilure, sensor data no_se, thermal control degradatlon_ and tele-

x. metry logicswltchin_. There isa growln_ body of evidencewhich demonstrates

_i:: the dependence of satelliteanomalous behavior on geophysicalparameters such as

}, local time and geomagnetic activity.
_i" Cotlsequently0 it has been postulated i' 4 that the anomalotls behavior ot syn-

:.- chronoUs spacecraft is due to electrostatic char_ing of the various spacecraft

i:,_ surfaces to large negative potentials, and their subsequent discharging. The elec-#:

!:i tromagnetlcpUlsesproduced by the dischargescoiltalnenough energy to interact

--a'_:i with electrottic logic circuits at d_stances of tens of centimeters° and cause voltage

_:,,: spikes large enough to cltange lo_'ic stores. Other data from spacecraft indicate

: ; that repealed discharging also rbs'ults in the deg_'adatlon of thermal contro! surfaces.
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Thus, it is the differential charging of the vat'ious thermally blat_keted of' coated /i

outer surface nlaterials with respect to each other arid with respect to the space-

craft m_tallic structure and the subsequent discharging, when the dielectric _

strength of the surface matet-ials is exceeded, that is one ef th_ major causes or _!
I

satellite anomalous behavior.

The purpose of this paper is to develop a spacecraft charging simulation model

which adeqtlately represents the spacecraft-to-environment interaction when the

spacecraft ia immersed in the charged particle environment that is encountered at

geosynchronous orbit during a geomagnetic substorm. Further, the principal

results of the simulation analysis model developed will b_ the differential charging

potentials between the thermally blanketed or coated outer surfaces and the metallic

structure of the spacecraft. To determine the spacecraft-to-environment inter-

action, the equivalent electrical model of the spacecraft with respect to the charg-

ing phenomenon is developed and the plasma environment is represented by equiva-

lent current forcing functions. The equivalent current sources of the charged

particlt" environment simulate the ambient plasma as a charging current source

and the surface photoelectron and secondary electron emissions as discl-_rging

current sources. The spacecraft outer surface corffiguration is represented by

constituent dielectric and metallic surfaces which collect charge from the environ-

nlent. In addition, a S/C geometrical model and a solar/ea_'th orbital model are

also developed to determine the _tln-illumlnatlon condition of the outer surfaces as

a function of spacecraR orbital position. That is, the geometrical and orbital

models are used to determine whether a surface is sun-illUminated, self-shadowed,

or earth-shadowed. In a.l'.litiotl, when a surface is sun-illuminated, the intensity

of the illumination, which is a function of the sun/spacecraft surface aspect angle,

is also determined by the models.

Charging models have appeared recently in tl.e literature. 2, 6, 7 liowever, the

models are based primarily on the arialysis of spin-stabilized spacecraft. For the

particular types of spacecraft analyzed, there was considerable seasonal and

diurnal variation of the exposed metallic area illuminated by the stm. llowever,

due to the restricted location of thermal blanket materials and the external struc-

tural form of spin-stabilized spacecraft, there were small diurnal variations in

both the amount and location of the thermal blanket material areas illuminated by

the sun during the midl_ight-to-dawn local time qt_adrant. Consequently, no attempt

I was to sun-illumination condition of exposed dielectric surfaces
made determine the

during the daily orbital flight. However, for three-axis stabilized spacecraft the

diurnal as well as the seasonal variations of the amount and location of both the

dielectric and exposed metallic areas illuminated by the sun are considerable.

The model discussed in this paper determines the variations of sun-llluminatt0n

condition of all of the exposed surfaces throughout the daily orbital path in addition
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to considerltt_ the seasonal changes. Also, the previous models have not con-

sidered the intrlrisie capacitance of the spacecraR structure with respvct to tl_e

plasma sheath. In this paper, the stt'uctU_al capacitance has been included in the

simulation model, and it will be shown that the stt'uctueal capacitance has a signif-

icant irtfluence on the transient response.

_- In the following sections, the development of the spacecraft charging model is

discussed in general terms and inciudes a discussion of the plasma model, the

electrical model, the geometrical model, a solar/earth orbital model, the mate-

'_ rtal properties and configuration definition, and the numerical integration

approach. Spacecraftchargingresultsare givenfor a geosynchronous satellite

duringthe midnight-to-dawnlocaltime quadrant for the fall-equinoxalidwinter-

solsticeseasonal periods.

2. SPACECIL.I,FT CII%II(;INGMODEl,III._VEI,OPMF,NT

The spacecraR charging model development can bestbe describedin terms of

the flowchart shown in Figure I. The S/C chal-glngmodel consistsof foursepa-

: rate models: a piasma model, an eiectricalmodel, a S/C geometricalmodel; and

a solar/earthorbitalmodel. The plasma model representsthe chargii_gand dis-

._i charging mechanism of the ambient plasma with respect to the spaceceaft by equiv-
_ alentcurrent soul-eel.The out'rentsources, which are dependenton the particle

energy di_tributlonfunctions,constitutethe forcingfunctionsof thecharging model

equations. The electricalmodel definesthe lumped element equivalentcircuit

representationofthe spacecraftsurfaceswith respectto the electrostaticcharg-

" ing phenomenon. The plasma model and electricalmodel are combined toform

, the nonlinearspacecraftcharging equations. The spacecraftgeometricalmodel

_i,_, defines the spacecraft outer surfaces in terms of approximate planar surfaces and

,_' curved surface projections and defines the vertices ot all planar and curved

/ surfaces in terms ota spacecraftreferencecoordinatesystem. The _olar/earth

_:' orbitalmodel determines the10catiottofthe spacecraftwith respectto the sun and

the ea_'th.The geometricalmodel and the soia_/earthorbitalmodel al-ecombined

• to determine thevariation of the sun-tllumlf_ation conditions of rite outer surfaces

With respect to orbital position.

_: To complete the modelling, the surface material properties and configuration

are defined. Tht_ surface material properties that ai-t_ most importaht in a space-

craft charging analysis a_'e: the relative dielectric cormtaht, the vai'lation of the

_/. surface resistivity with respect to elects'teal stress level, and the variation of the

i , bulk resistivity with respect to electrical stt'ess level. The material configuration

definition describes the location of the various thermal blanket and surface coating
materials.
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Figure I. SpacecraftCharging Model Fib,#Chart

The elements of the flowchart Willnow be discussed ingreaterdetail.

2.1 Plasma %10del

As discussed previously, spacecraft at geosynchronous, orbit _ill occasionally
i

encounterenergeticcharged particleriuxesand these fluxeswillcause the various

outer surfaces to charge to large potentials. The charging and discharging I

mechanism of the ambient plasma with respect to the spacecraft can be represented

or simtflat_d by equivalent curretlt sources that become the forcing ftmctions of the i

charging mod_l equatioris. The constituent particle fluxt_s that affect the charging i

of a sui'face ai'e protons, _lectrofls, photoelectrons, and secofidary electroris. I

Several itlvestlgators 6° 8, 9 have approximated the energy distribution of the

particle fluxes as measured on ATS-5 by a Maxweli-Boltzmann (M-B) energy dis-

tribution and, rurthez', have assumed the particle fluxes to have an onmidirectlotlal

energy distribution; that is, the energy distribution of the particles is identical in
!
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each dir0ction. Thus, it is possible to charactcrizO th0 parttvle energy dlstribt_-

tions by a thermal energy (K,r) expressed in electron volts. This approximation is

used in this paper to simplify the aMalysts and to provide an insight into the problem

that might otherwise be obscured by a mot0 compl_x approach.

The total current _lowing into) the vutvr surface of a spacecraft is

I = JT ' A (1)

where A is the surface area and JT is thV total positive current density into the
sul-face and is given by

• JT = Jp + Jsp " Je + Jse + Jph (2)

" Where jp isthe incidentproton currentdensity,Jsp is thesecondary electron

currentdensityproduced by incidentprotons,Je isthe incidentelectroncurrent

density,Jse is thesecondary electroncurrentdensityproduced by incidentelec-

trons,and Jph isthe photoelectroncurrentdensity.
A charged surface at a given potential in a charged particle environment will

acceierate particles ot th_ bpposite polarRy and repel particles of th_ same

polarity. Thus, assumirig an omnidirectional Maxwellian energy _tstribution, the

fraction ot ambient plasma electrons reaching a large surface at a potential V is I0

Ne--N e exp (_V 1 , V_<0 (3)
o \Tel

where Ne isthe incidentelectrondensity,Ne isthe ambient electrondensity,V• O
is the pOtentlalof the surfaceunder consideration,K isBoltzmann's constant,e

is the charge of an electron,and ,re isthe absolutetemperature of the M-B elec-

tron energy distribution.

The average ambient electroncurrelltdensityincidentto a neutralsurface is

givenby

-- N e v (4)Je e e
o o

where Je is the average ambient electrott current density and _e is the meatt
ambient _ermal velocity.

Thus, from Eqs. (3) and (_J)0the average electron cut'rent density incident to

a large surface at potefltlal V is
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Je _ Ne e vc :

o
or

(V/T e)

Je = Je o e , V __0 161

where

KT e
Te = T (7)

• iS the equivalent temperature, expressed in volts, of the M-B distribution approx-

" treating the plasma electron energy distribution, and Je is the electron curz'ent
detlsity incident to a large surface at potential V. For a positive surface

Je = Je o , V_O (8)

That is, a surface at a positive potential will att_.a_.t oppositely charged particles

bill cannot extract mor_ partielr;s from the plasma bnvironment than th_ ambient

particle density Neo. Similariy, the proton current density incident to a large
sttrtetce at potential V is

-V/Tp
JP = JPo e , V __0 (91

and

JP=JPo ' V_O (tO)

where JPo i_ the average ambient pt_oton current density incident to a neutral sur-

face, and Tp is the equivalent temperatilre of tile M-B dlstl-ibtttton approxlmatlnB
the plasma pi.oton energy distribiltit)ti and is expressed tn volts.

In additiori tb the abo_,,e charged particle fiilxes, there will be secondary emis-

sion electrons as well as photoelectroi_ emissions. _otli types of charged pat.ticles

will be repelled by a silt-race at a negative potential attd atti'acted by a sui'face at a

positive potential. Consequently, based on the pi'evious discussion, the seconda/'y

elect/'otts leavifig a surface of potetitial V is giveh by
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.V/Ts
i_, Jse_J_eoe , V_O 1111
i

; Jse = J_eo ' V_0 1121

i,
_i "VlTs
! Jsp =Jsp oe , V__O (t3) ._
iii,:
i )

Jsp-- JsPo ° V_-O 1141

: !

}=ii where J_e and Jsp are the average secondary electroncurrentdensitiesemitted• 0
i_i from a neUC_raisurfaceproduced by incidentelectronsand protons, respectively,

:__.. Jse and Jsp are the secondary electroncurrentdensitiesemittedby the incident
_'_: electronsand protons, respectively,and Ts is theequivalenttemperature of the
_ M-B distributionrepresentingthe energy distributionotthe secondary emission

_' electronsand isexpressed involts. The secondary emission electroncurrent
__ ,

_=_ densitiesare directlyrel_tedtothe incidentparticlecurrentdensities. Itis
!_ asslmled thatthe secondary electronsemittedfrom a neutrals_ffaceare related

i:_:i" to the incidentpai-ticlesby a fixedconstantand can be expressed as

_:i_!;(' Jseo =Je fe 1151

:t

_'_: Jsp = Jp l'p 1161
'0,' O

i_' Where fe isthe t-atioofsecondary electronstoincidentelectronsand fp isthe ratioo_secondary etectronstoincidentprotons, Ingeneral, thesecondary emission

_., constants,feand fp, Willhave diffel'ei_tvaluesfordielectricand metallicsui'faces.
A simllar development holds for thephotoelectronemissions produced by stm

illumination.The photoelectroncurrent isdirectlypt'oportlonaltothe intensity

or sunlightwhich isr.elatedto the angleof incidence. Consequently, thephoto-

_lectroncurz'en_deilsltyemitted from a surfaceat potentlalV can be expressed as

"V/Tph

_.ii:. Jph = Jph oe cosa , V>--O 1171

,P
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Jph - Jph oc°'_a , V_O (In)

where J-h is the photoelectron current density emitted from an illuminated _urfacc

at potential V0 Jph ° is tim average photoelectron current den._tty emitted from an

tliuminated neutral surface, Tph is the equiv_lent temperature _ff the M-B di._tri-
bution representing the energy distribution of the photoelectrons cxpres_ed in volts,

a=,*.

a is the angle between the sun-line and the surface normal vector (sun/spacccraR

surface aspect angle) and

cos_forI_I<_/2
COS _ .--

0 for lal ->_/2 (self-shadowingconditions) . (1'J)

The totalpositivecurrent densityintoa surfacecan takeone of fourpossibly

forms depending on the polarity,positiveor nega:ive,o¢ thesurface petentialand

the presence or absence of sun illumination.Thus, fora hrge dielectricsurface,

the current forcingfunctionwillhave the generalform

e + e + (cosa) e
ID(V) - JPo fPD JPho

V/Te[' -V/Ts !]+ Jeo e _feD e - " A (20)

whet'e ID is the total positive current into a large dielectric surface, A is the area
of the sux'face° and all other terms have been defined previously. The above equa-

tion must satisfythe foltowingcondi[ion

I ffs = +I and V > 0;otherwiseleaveunchanged

eSV/x =

i if s = -I and V__ 0; otherwise leave unchanged . (21)

Exposed metalltc parts ef the structure can be located on many different outer

sut'faees of the spacecraft; consequently, the various exposed metallic surfaces,

which are electrically connected, can have different sun-illumination conditions

and the current forcihg function will have a more complex form. In addition, the

exposed metallic surfaces are generally small in area. Fewer Charged particles

, will be deflected from a small surface at a _iven potential than a large surface at

245

00000003-TSD14



:i

• r

_ the same potentiaL' consequently, a correction _aetOr mu_t be applied to s_nall

:_!:q surface se-e_ .ThU_, the postttVe eurt'ent flowing into the exposed metallic struc-
_ ture is

"V/Tp t fPM e'V/Ts)
_"-:_, IM(V) 11 + V/Tp) e +
::_, = AMT JPo

=:_J_i" + AMT Je° e M e - !1 + iV/Tel) .
m

�_.AMi Jph ° (cos a t) e "V/T ph (221i=l

where Eq. (21) holds for the above equation, AMT is the total exposed metallic

_ area, AMi isthe exposed area of the ith metallicsurface_m isthe totalnumberof e_tposedmetallicsurfaces,'_iisthe sun aspect anglefor the ithmetallicsur-

_ face, antl the tollo_tingholds for thesmall at'eacorrectionterms 7

_ (I + V/Tp) --
_: 1 for V _ 0 (23)

(l +Iv/%l) forv_<0:' (i+ Iv/zel_ :
.....!_ i mrV >o . (24_

Equations (20) and (22)are the plasma and photoemissiongeneratedcurrentsources

and constitutethe forcingfunctionsof the spacecraftcharging equations.

2.2 Material Properties and Con[igumtioa

_, The spttCeerafl outer surface material '.propertte_ and COnfi_ratlrn definition
are needed to complete boththe geometricalancleleCtriCalmodels. Ess_t_tlally,

the matei'tal properties and configuration definition cOt_stSt of describing the loca-

•_ tton of the vatqous outer surface thermal blartkets and coatings and thetx' electrical

'_'_ properties. The loCatiOn of th_ materials is needed in tl_e geometrical model to

_:_',. establish the number o_ constituent pl'aflar aftd curved surfaces of _he s_acecra_t.

= _._ . The electrical pi'op_rties o_ the materials are needed tfl the _lectrtcal mbdel to
:_°' determine tlt_ eqtflvaient circuit element values of the outer surfaces of th_

i spacec_-afl.

,_ 246
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The electrical propePtles of the outer surface thermal materials that are most

ilnpoetant _'_a spacecraft charging a lalysi_ are:

(I) The relative dielectric constant.

(2) The vat'iatiott of the out'face resistivity with respect to electrical st_,ess

level.

(3) The variation of bulk resiSti_tity with respect to electrical stress level.

(4) Ratio of surface to built leakage currents.

All of the above properties can be determined experimentally. In fact, for mean-

ingful results,the lastthreeparameters shouldbe measured under conditions

similarto thoseexperletleed_inthe cha_'gedparticleenvironment atsynchronous

orbitduring a substorm. That is, tl_emeasurement resultsWillbe somewhat

depende_ on the energy levels,and current densitiesof thecharged particlesbom-

bardingthe dielectricsurfaceof the thermal blanketmaterials. Inpractice,how-

ever, thesepropertiesare-measured by bombarding the materialswitha mono-

ergeticelectronbeam.

2.3 Geometrical %lodel.

The purpose of the geometricalmodel is todefinethespacecraftoutersurface

areas interms of approximate plaztarand curved surface projections,establisha

referencecovrdinatesystem inthe spaceCraft_and deflnetheverticesofallof the

planarand ctirVedsurfacesin terms st the referencecoordinatesystem. FUt-ther-

more, the resultsofthe geometricalmodel are needed to complete the electrical

model. That iS0 theapproximate geometricalsurfaces of.thespacecraftoutercon-

figurationare u._edin thecomputationof the _quivalentcapacitorantlresistor

element valuesof the electricalmodel (each _talueisrelatedtOthe surface

area). The referettcecoordinatesystem can be selectedanywhere insidethe

vehiclestructureand shouldbe chosen such thatone or more coordinateaxes are

paralleltothe axes ofcymmetry, or parallelto the major planarouter surfaces.

The i-eferencecoordinatesystem isusefulin determiningthe relatlvelocations

and orientations of the constltttent outer surfaCeS. In addition, the reference co-

ordinate system is needed to determine the location of the spacecraft with respect

to the earth and sun. The surface vertices are used in the computation of the

surface normal vectors, and the surface normM vectors togetl_er with the location

o_ the spacecraft _#lth respect tt_ tile sun are used tO determine the sun illumination

condition of the surtaeel that iS, whether the sui'face is lliuminated by the sufl0

self-shadowed, o_ earth-shadowed. It should be noted that there can exist outer

surfaces that are never lllurtiinated by th@ sun; these at-eas are designated as

"pe_.manefltly" shadowed areas.
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I_ order to determine the _un-tllt_mination condition of the constituent sur-

faee_, all outer surface areas must be expt'essed in terrn_ of the six major plane_

parallel to the coordinate axes. Hence, the areas of the constituent planar sur-

faces parallel to a coordinate axis can be easily expressed in terms of the six

major planes. However, for planar surfaces not parallel to a coordinate axis, the

effective surface areas projected into the. six major planes must be determined.

The projected areas in the six major planes are then assumed to have the same

normal vectors associated v_ith the six major planes When determitling their sun-

illumination condition; however, the true, unprojected area is used when determin-

ing the area that is subject to the charged particle environment. The same proce-

dure is_oLtoWedfor allcurved SurfaCes,thatis, cones, spheres, cylinders,etc.

The exposed metallicpartsof thespacecraftstructurerequirespecial

attention.Sincethe e_tposedstructuralpartscan existon almost any constituent

planarsurfaceof thespacecraft,the exposed _etallicp.artsWillhave different

sun-itiuminationconditionsdependingon the particularlocationofthe exposed

part..The effectiveprojectedarea of each exposed metallicpart iscomputed in

each ofthe sot major referenceplanesas outlinedabove. The effectiveprojected

area inconjunctionwiththe particularsun/spacecraftsurfaceaspectangle isused

in thecomputationof theph0toemission current;thisis representedby thelast

term ofEq. (22). However, the actualexposed area o_a rnetalllcpart i._stlbject

to theplasma envL'onment;thus,the totalexposed metallicarea isuse,4inthe

computationofthe incidentpartiClecurrents. This is representedby the firsttwo

terms of Eq. {22).

2. | Eleetficitl _lodel

The electricalmodel definesthe _umped element, equivalentCirCuitrepresen-

tationof thespacecraftoutersurfaces with respecttothe eiectrostaticcharging

phenomenon. The equivalentelectrostaticcircuitisa network consistingotcapaci-

torsand resistor'Swhose valuesire eithercomputed or measured. Itwillbe

assumed thata dielectricSurfacecan be representedaS a simple lumped capacitor

and a parallelleakage resistance;however, thisisan approximate representation

when consideringthecomplex processes thatoccur when a dielectricsurface is

bombarded by highenergy p_rticles.The capaeltOrcompoxientsrepresentthe

capacitanceof th_ vzlriousdielectricsurfaces with respectto the spacecraftstrtiC-

ture. The reslstorcomponents representthe teakagecurretltfrom tliedteiec{rtc

si_rtae@s to the apac_craR structure, Additional capacitors a_id resisto_'s are

heeded (o represent the surface capacitance and leakage ci_rrent betV_een adjacent

surf_lces and bet_#eea tlltJminated and noniUUminated sections ot a stli-tace. Ho#c-

evei,, these sui'face interaction processes are second-ordei" coupling effects and

will not be coflside/'ed in the mode1. This is a conservative _ssUmptiozi _t_d does

_48



not affect the ability of the model to predict the potential differeflees between a

surface and the structure or the potential differen_es between adjacettt surfaces.

Cottseeiuently, the equivalent circuit of the spae_r_raft with respect to the charging

phenomenoft has the simplified form shown |riFigure 2.

x

SURFACE
ELE MENT_

SPACECRAFT IiI /

s'rl_ue'r__ v 1

Io l It%! :• i1
SOUlqC ," Vo •

• i
Iqn .=

_. ..._,___ "n: •

e P LASMA
SoL_{CECn InO

- Figure 2. Spacecraft EqUivalent Circui_

: Ithas been assumed that there are n outer surfaces. The i-th surface has an

absolut_ potentialof V i volts and each surface, or node, has a.corresponding

plasma and photoemission generated current source having the general form of

_. Eq. (20). The spacecraft structure has an absolute poteritlalof V volts and I is
O O

i the plasma and photoemisslon generated current source into the exposed metallic

surfaces and is given by Eq. (22}. The capacitance° Co, i$ the intrinsic capaci-
tance of the spacecraft structure with respect to the plasma. This structural

, capacitance can be approximated by the isolated capacitance of the structure. Tltis

is a reasonable approximation since the plasma sheath outer boundary, which rep-

resents the terminus of the strong satellite fields due to spacecraft charging, has
a depth on the order of tens of meters.
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The following set of sitnultatleous spacecraft charging equations carl be written

for the ._Implltied circuit of Figure 2:

C Id(v I -V o) (V 1-v o)
+ _- lt(V I)dt R[(V 1 - Vo)

Cn d-(V n - Vo) (Vn - Vo)
+ : In(Vn)dL Rn(V n - Vo)

C dVo n
o dt = Z Ii (257

i-O

Equation.(25)ingeneralwillbe nonlinearsince the leakage resistancesare non-

linearfunctionsof stresslevel(Vi - Vo) and theplasma and photoemissiOngen-
eratedcurrentsare nonlinearfunctionsofabsolutepotential.The rtumberot eqUa-

tiOns,n, isa functionofboththe number ofsurfaces withdifferentdleleetric

materlalaand thenumber ofsurfaces withdlff_rent_tin-i|Itlmitaationconditions.

2..__lar'Earth 'Spacecraft Orbit A_del

The purpose otthe solar/earth/spacecraRorbitmodel is to determine the

sun-iUuminationConditionof a spaceeraR surfaceincludingbothearth-shadowhag

and self-shadowingconditions.The sun-illumlnationconditionof a surfacei_

determined by firstdefiningthe planarsurface and itsverticeswith respecttothe

spaeecraR referencecoordinatesyst,-,.m.This isessentiallyaee0mplished inthe

geometricalmodel. Next, the normal vectorofthissurfaceiscomputed and the

relativelOCationofthe normal Vectorwith respecttothe spacecraftreference

coordinatesystem isdetermined. The relativepositionotthe sun withrespectto

th_ earth iscomputed as well as the relativepositionof the spacecraftwith respect

to tile earth• Using cOordiriate transformations, the relative position of the space-

craR eoof'dinate system with respect to tile sun is then determined• Finally, tile

angle be'ween tile surface normal and the sun vector, the aspect attgle, is com-

puted. Til_ intensity of sufi-iilumination is propbrtiofial to the cosin_ of the

aspect angle with full illumination occurring for an aspect angle of 0 °. The surface

is self-shadowed when the absolute value of the aspect angle exceeds 90°. fllso,

the earth-shadowing condition, which occui's when the spacecraft is in tile umb,'a

of the earth, can be similarly determined. The solar/earth/spacecraft orbit

250
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model c_msisls of four sepal'ate parts: the spacecraft eph_m0ris modeL, the solar

m,_del, the co()rdinaie transformation.-° and the solar�vehicle/earth _eom0trical

model.

ThO relative geonietry bet_keen the earth, the sun, the spacecraft° and a con°

stituenl surface is shown in Fi_'ure 3. As indicated in Figure 3, the surface zs

defined by the verlices A, B, and C. To determine the solar:'spacecraft surface

aspect angle, the surface normal vector and the surface-sun vector must be _,,

computed. Thb vertex vectors of the surface expressed in vehicle coordinates

are

_'_ (26)

and the sun vec|oP in inertialcoordinates at the (-enterof the earth is

OS (27)

and is computed by the solar model program. The spacecraft vector expressed in

inertial coordinates is

I

(_I: (28)

and l,,_ computed by the vehicle ephemeris program.

From Fig'ure 3, it can be seen that lhe surface normal vector is given by

the solar/spacecraft surface aspect angl_ is then glv_n by

and lhe earth aspect angle is

2_1
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_, Earth-eclipsing (shadowing) of a surface is given by the following condition

_: /3< _T eclipse eonditlon
...._,_' (32)

':', _] _- _T non-eclipse condition

=_.' where
k"

dt

. _T = stn'l (Re/r)

_=_ -Re : radius Of earth (33)
,i

_!}- and 13T is the _arth disc aspect angle subtended at the spacecraft. Thus, an earth-

",; eclipsing condition occurs when the spacecraft is in the umbra of the earth. Self-

: shadowing or Self-eelipslr_g of a surface by the _pacecraft itself is given by the
°! following condition:

_,, 252
¢
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lal -> _/2 eclipse condition I
(34)

[al < _/2 non-eclipst • condition

where a is the solar/spacecraft sUrface aspect angle determined from the solar

projection upon the surface normals.

In the simplified spacecraft ephemeris model, the location of the spacecraft

with respect to the inertial coordinate system of the earth is determined. There _"

is no need for a precise spacecraft orbit so an abbreviated model is used. The

orbit is assumed to be circular with a constant radius and a nominal period of

1440 rain. The spacecraft is flown h_ the equatorial plane (inclination = 0°).

In the solar model, the position ot the $1m with respect to the earth is derived

from the American Ephemeris and Nautical Almanac which provides mean position

in terms of a series expansion of elapsed centuries from a base epoch. Conven-

tional coordinate transformations are employed to determine the position of the

sun with respect to the spacecraft (vehicle) reference coordinate system.

2.6 '_umeri,.alInt,.gr_tio, _.pl_toavh

The first order, simultaneous, nonlinear spacecraft charging differential

Eqs. (25) vHth forcitlg functions represented by Eqs. (20) a_ld (22) are of such a

form that statidard closed-form methods of solution do not apply. Consequently,

several "initial value" numerical integration techniques were utilLzed to eOmpt_te

the time response of the absolut_ potentials, V 1.... , Vn. The greatest _uccess ':

was achieved with the Runge-Kutta 11 integration process. After some preliminary t
experimentation, it was found that a step size of O. 001 sec produced satisfactory i

results in the time response computation. The step size is the incremental value t

of the independent variable, time, at which the dependent variable value, absolute i
t

potential, is computed. J

From initial computations of the time response of the set of Eqs. (25) using ]

actual circuit values of capacitance and nonlinear resistance and actual pla._ma ]4
substorm parameters, it became apparent that the transient and steady-state ]

results could not be obtained in a single numerical integration execution. Fir,_t,

it was found that the steady-state valtles of potential are reached after severa!

I hoUi's. Second, the computer execution time-to-,solUtion time was enormous :

{typical rim times were on the order of 20 to 30 rain to obtain 1 to 3 rain of simu-

lated time). Consequently, it was decided to characterize the transient behavior

by computing the transient response up to that point in time at which the transient

response was well=behaved, that is, either mohotonically decreasing or increa._ing

(usually on the order of 1 to 3 rain), The steady-state solution was computed
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separately in a _.apidly executed program. Thtg overall approach was not rigor-

ously accur,_t_ since plaints eondition_ can change Within mint_tes and illumination

conditions can change within tens of minutes. HOWever, if worst case plasffta and

Lllumtnatio_ cOnditlon_ at.e employed, the solutions, botll transient arid steady-

state, will 2,epresent worst case values arid more aCcUrate solUtiOns should not be

' necessary.

To obtain the steady-state solution, a more dlrevt method was employed.

; The steady-state condition is characterized by the condition dVi/dt -- 0. From
i Eq. 125), this results in the steady-state system of equations m

i -%- 0 o 1 Ivi - Vo)
!. dt = _i I i - (Ri(Vi , Vo ) , 1 < i _ n (35)

i "
and

!" n

i dVo _.i _ = 0 = I i 136)

! . '

i:

i The sOlutiOn to this system of equations can be viewed as an optimi_atlon

pz'oblem where Eq, 136), which represents the current balance condition, must be

minimized While simultaneously satistylng the set of n nonlinear equations, Eqs.

i_ 1351, which can be considered as constraint equations on the current balance con-i:
i, dltlon. For simplicity, itwas decided to u_e a simple direct enumeration scheme
! •

tO it_rattvely search the region
r

F:
F-"_

L:I,
i=: V L_<.V i<_V U , 0_i<_n 13_1
i

F where
i :

V i = V L+nAV , O__!__n 1381
i '

,.. sUCh that Eq. 1361 was minimized _hiie satts_ing the n constraint Eqs. 1351. The

terms V L and V U ar_ the io#¢er and upper bbUnds, respectively, ot the absolute
pot_tttlalg ot the stirfaces and stx'ueture. Positive pot_ntiai values wer_ Lncremefl-

- ted by AV = 0. 1 volts and negtttive potetRial Values b,,, AV _- 50 volts.

i ,
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Spacecraft charging simulation results for a thr0e-axi_ stabilized spacecraf!

are presented in this section. The spacecraft analyzed, with thermal blankeL, m

place, could be adequately modeled geometrically as a "box-like" _tructure with

large "flat panel" type solar cell arrays which are located above and below tim

north and south panels, respectively, of the main spacecraft structur0. The

antenna structures, with thermal blankets, could be model0d as conical structures

that protrude from the front side of the spacecraft main structure and point towar'd._

the earthts surface. The dielectric properties of the thermal blankets and surface

coating materials Were measured and the equivalent capacitances and leakag¢_

resistances of the constituent surfaces were computed. The results are listed in

Table 1. There were 13 surfaces with either different materials or different

orientations (with respect to the spacecraft reference coordinate system) that had

to be considered in the spacecraft charging analysis. The front side had three

different materials and the north and south panels had two different materials.

The resistor values listed in Table 1 are based on the bulk resistivity character-

istic and represent the values computed at low stress level. The last element in

the table is the structural capacitt.nce and was computed by using som_ of the

formulas listed in Appendix A.

Table 1. Element Valtle Summary of Three-Axis Stabilized Spacecraft
Analyzed

Element Location Resistor Value (ohms) Capacitor Value (uf)

1. Backside R 1 8.9 x 107 C 1 0.37

2. West Panel R 2 : 1.2 × 108 C 2 : 0.29

3. North Panel R 3 : 2.1 _ 108 C 3 _ 0.16

4. North Panel R 4 : 1.8 _ 109 C 4 0.16

5. SoUth Panel R5 1.4 / 108 C5 = 0.24

6. South Panel R 6 = 4.0 v 1010 C 6 0.08

7. East Panel I{ 7 1.2 _' 108 C 7 0.28

I 8. Front Patlel f_ 8 : 2.5 _ 108 C 8 = 0.13
9. Front Side R 9 _ 9.5 ,( 10 l0 C 9 _ 0.069

10. Front Side I110 = 2.8 _ 1011 Cl, 0 0.024

11. SolaPAPray Sun-Side Rll = 3.0 ¢ 1010 CI1 0.65

12. SolarArray DaPk-Side Hi2 • 1.4 _ 108 C12 4.4

13. Permanently Shadowed RI3 = 3.8 _ I08 C13 = 0.087
Sides

14. Spacecraft Structure ...... C14 : 0.000356
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In genei'al, the bulk resistivity ts a ['unetLori o_ str0..l'_ level. The bt/Ik Pe_t_-

tivities or all the dielectric m_cerials were measured by bombarding samples of

the rhaterials by high energy electrons and measuring th,_ through conduction leak-

age cut'rent as a function o_ electroh accelerating b_am voltage. It vvaa Conserva-

tively assumed that the su, tace stress level was approximately equal to the beam

voltage and a pieeewise approximation to the bulk resistivity versus beam voltage

characteristic was computed. All ot the ptecewise approximations ot the dielectric

materials had a _orm similar to the pieeewise approxitnation of Chemglaze paint _..

shown in Figure 4. To simplify the simulation and to decrease the execution time,

the piecewise approximation 0r ali of the materials were employed in the analysis.

/
/101"/ --
l
/

/
/
/
[

[
10le :- /

I
1015P= 3.3 X

l
V_ 2.B KV

1015

V_2._KV

_" ,)-4.0_ _ 2.2 x 1017
tt_

V IN KV

, 1014

1013
10,0 1.0 .1

BEAM _/OLTAG_ IN KV

Figiz_'e 4. Piece-Wise .Approximation of Chemglaze Paint Bulk Resistivity
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Spact,vratteharglngsimulationresulL_were obtaln_dforth_ lhv_,t,-axi._

stabilized ._pac_crafi during the peak,_ of the fall-equlnox and wintOr-solstlee

periods. The,qe two periods of the earth-sun orbit represent the oxtresnes of sun- !
tliumlna[ton cotldttiotl expOrienced by a geo._ynchronous natellite. For example,

during the equinox period the _atellltv 1._totally shadowed becau,_e of earth-

eclipsing and the spacecraft structural potential will achieve its highost..ncgative

value. The earth eclipse period can last as long as 72 rain roughly from 23:30 to b.,

0:45 localtime. During the peak of the winter-solstice period the south panel of

the spacecraft as well as the solar array, east panel, and backside are sun-

illuminated. Tl_e maximum amount of exposed metal that is illuminated by the

sun occurs duringthisperiodbecause thesouth panelhas more exposed metal

thanthe north panel;ifthe reverse had been true,the maximum amount of exposed

metal thatis illuminatedby the sun would occur duringthe summer-solstice per-

period. Thus, duringthe wlnter-solsticeperiodthe spacecraftstructurewill

achieve itlowestnegativevalue.

Using the average plasma substorm parameters ofthe ? 2anuary 1970 sub-

storm, which was the worst substorm measured by ATS-5 duringthe first50 days

of 1970, and assuming a time-invariant,omnidirectionalcharged particlesub-.
storm, the absolutepotentialsofthe spacecraftstructureand outer surfaceswere

computed. That is, itwas assumed inthe analysisthatthe substorm can be ade-

_ quatelyrepi'esentedas a "step"functioninelectrotland pi'otontemperatures

' and particlecurrentdensitiesover theirvaluesthatnormally occur duringthe

._ "quite-time,"thatis, theirquiescentconditions.

The average substorm param,_,tersas wellas other parameters used in the

: analysisare listedinTable 2. The complete substorm profilesfor the 2 January
6

substorm as wellas theaverage valueshave been given ina previouspaper.

Based on ATS-5 dataof the 2 January substorm, a "step"funct.ionof 9 hr duration

was employed inthe simulationmodel, existin_roughlyfrom 23:00to 8:00local

time. Starting with initial values ot zero absolute potential at 23:00 hours, the

Runge-KUtta nttmerlc[tlintegrationprocedure was employed to determine the

varieties of the sut_face and structural potentials with time. Since the numerical

tntegratlotl techniqu_ prodtzced roughly 60 sec of simulation results for every

1000 sec of execution time. the continuous substorm r_sponse could not be com-

puted for th@ full 9 hr duration. [n:ttead. the transit.sat solution was computed using

the Runge-KUtta procedui'e untilthe surface and structuralpotential time response_

wei-e well-behaved and appi'oachtng their steady-state values.-

Since the magnitude of the transient response is approximately proportional to

the magnitude of the change in forcing function conditions, the more significant

•_ transientresponst:swilloccur when thereisa significantchange inthe particle

O0000003-TSE
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, :" Tabl0 2. Photo0tnl._ion, St_eondary Eml.q,_lort, arid Omnidirectional Planma
ii,, Pa_am0tern
! ?

i-_

i !i Parameter Typical Range Valu0 SclOcted

Tph I V_Tph'_3 V 2 V

Ts 2 V_T s _4 V 2 V

feM 0 _<feM _<I O.5 ,,_

feD 0 __feD _ 1 0.75

fp 0 <_fPM -<I 0.5

i_: fPD 0 __<fPD <-I 0.75

_,i:i. Te --'- I 3.6"00kvkV(quiet}lsubst°rm)!{ 20.0 kV (severesubstorm)

_i Tp .... { 12.0 kV (substormI
i _ 6.0 kV (qUiet}
_ 40.0 kV (sc_reresubstorm)

i r ' 0.82 na/em 2 2.0 na/cm 2

! ii JPh° _< 4 na/cm 2 -<JphO

i ; : Je 0.02 na/em 2 0.6 na/cm2 (substorm)
_ o -< Jeo O. 02 na/cm z (quiet}
_ __2 na]cm 2

i _!, 2 pa/cm 2 _< _< 0.02 na/cm 2 (substorm)

JPo 32 pa/cm 2 JPo 2.0 pa/cm 2 (quiet}

'-_ cUrrentdensitiesor energies. Consequently, transientsolutionswere obtainedat

! '} the oriset of the plasma substorm, where particle temperatures (energies} and cur-

i ! rent d_ltsities change suddenly from their quiescent values to their substorm

: values; at the beginning of earth-eclipse, where the photoelectron current forcing

,_ function is zero; and at the end of earth-eclipse, where the photoelectron current
,i

_o! fo,'ctng functton becomes nonzero. The transient response of the structure, the

i °:: solar array, and the surface that exhibited the gi'_atest steady-state potential dif-
ference Is shown in Figure 5 for the onset of the fi kV substorm. In this figure, as

!

' well as the others• to be presented, the transient response is shown for a period
! :

_:_ of 70 sec and the steady-_tate solutions are shown on the right side of the figure.
The transition period fro n the transient to the steady-state solutions is Indicated

by the dashed lines. (As expected, the surface that consistently exhibited the

258
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Figui'e 5. Transient Response at Onset of a 6 kV Substorm. Fall-Equinox 23:00 LT

greatest steady-state potential difPerence between the structure and the surface

itself, was covered with dielectric material that experimentally had the highest

value of bulk resistivity. ) It was assumed that all potentials were initially at zero

volts. It can be seen that the surfaces "fall" instantaneously to a few hunured volts

with small potential differences between the two outer surfaces and the underlying

structure. This behavior was typical of all of the surfaces of the spacecraft. The

absolute potentials than "_a11" monotonically negative until, after a long period of

time, the final steady-state values are achieved. The transient response at the

onset ot earth-eclipse is shown in Fi_ure 6. It was assumed, as a worst case,

that the steady-state values o$ the previous period had been achieved at the s._art

of the earth-eclipse and are the initial values used in the numerical integration

program, it cat1 be seen that the structure instantaneous.ly "falls" to a negative

value of about 9 kV, however, the initial potetltial diffeeetices are maintained, but

decrease mohotonicall_¢ in the steadyostate to small values on the order of a few

hundred volts. The tratisiet_t response at the end of the earth-eclipse period is

showi_ in Figure 7. Again it @as assumed, as a worst case, that the steady-state

values of tlie previous period had been achieved at the end of the earth-ec:ipSe

pet'io_ arid tliese values theti became the initial values in the numerical integration

program, The structural po_eh_ial instantaneously decreases to a nega_l_,e Value of

259
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_:, Figure 6. Transient Response into EcliF'e for a 6 kV Substortn. Fall-Equinox
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_, a few hundred volts; however, the potential differences are maintained initially and

_: then increase monotonically to somewhat larger values. The solar array is

_/ "clamped" to zero volts (actually less than one volt positive) by photoemission.
_ Thisconditionoccurs for most surfaceswith fullsun-illumlnationintensity.

_ Upon eompartn B the steady-state with the transient solution Values, it becomes

_!! apparent that the flmti steady-state values, that is, those values achieved if the

_ sun-illumination conditions dtd not change, represent the worst-ease differential
.... values. Also, the differential potet,,,als can change instantaneously by no moi-e

: than a few hundred volts. But, the absolute potential of the spacecraft structt_i'e
A.,

c_'

=_*...... 260
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_!:_ can change almost instantaneously since it has small capacitance. In all cases,

_i the transientresponse times are controlledby eitherthe potentialconstantsof

-:_: theforcingfunctionsor the tlme constantsot the circuitelements or both. The

__ ditterentialpotential._ot the outersurtaces do.notchan_e instantaneouslyby large

_i:: amounts since the circuit element time constants, which are large.in value (the

:_. product of resistance and capacttance), are dominant. However, the absolute
oi_
_. potentialotthe sUrface_,which is thesum of the absolutepotentialof the structut'e

_!::: and thedifferentialpotentialbetween the surfaceand the structu_'e0can change

°' i° _: instantaneously ii_ conjunction _tth the structure. Thl_ is demonstrated in all ot

'_, the transient responses arid in particular in Figures 6 and "l. At the beginning and

at tl_e end ot earth-ecl_nse0 the absolute potential of the structure changes by a
_.

;!i largeamotintantlthe absolut_potentialsof the sui'faces cliangeby a similaramount_
=% thusthe potentialdifference_oo not change irivalue initially.

= °!:

"i" 261

., ,. , ; . . - ............. --.:::.............. , . ,',..... =_ - ..... _,=. -_ '_-' i. --:---.," = , ,n . '-r _,............ t

O0000003-TSF02



I I 1 ! I I I !
f

At the OnSet ot the Slibstorlu, the structure 'Ifa11_" Slowly negatively ctnce

the_'e are photoelectron emiS_ioP.s which t_nd t0 cancel the i_lu_ of electronS from

the plasma cuz_rent source. At the Onset of eai-ih-eeltpse there are no phot0elec-

t_0r, c_l-rents and the plasma electron cu_'t_ent sources dominant and raptd].y

charge-up the Smal_ structural capacitance. At the end of earth-eClipse, the l_rge

photoelectron-current sources again reoccur. The large outflux of electronS from

the exposed metallic parts produced by the photoemtssion currents i_ instantan-

eously so@plied by the structural capacitance.and consequently, there is a rapid _*'

decrease in the negative absolute pot_nti_ _ ot the structure.

As discussed previously, for three-axis stabilized spacer,'aft tbere is con-

siderable diurnal as well as seasonal variations in the amoUftt and location of the

outer sur£ace areas of the spacecraft that are exposed to the sun. T_US, :he stin

illumination condit_m of the 13 dielectric surfaces of the spacecra_ are computed

throughout the orbital path. From the solar/earth/spaCecraR orbit model it was

found that the sun-illumination condition did not change significantly in local time

inc:ements less than 30 rain. ConSequently, steady-state solutions were computed

at 30 rain increments throughout the duration of the substorm. In general, the

fi:ml steady-state solution wili never be achie,_d at the end of the 30 rain period

slice some of the source potential and netv_ork time constant_ involved are on the

0raer ot thOuSandS of seconds anti the initial Sun-illumination Conditions, on which

the fi,_al steady-State sOlUtion iS based, will change significantly e_ery 30 rain. A

sumiT_ary of the _paeecraft steady-state values using the average plasma pai'ameter

values o[ the 2 Jantiary substorm, iS listed in Table 3 for 1 lit increments thl_ough -

out the duratio_ of the substorm for the fall..eqUinox period. The hOurly incre-

mental values are representative of the worst-case potential differences obtained

when compared against the values computed in the smaller half-hour _ increments.

The _videly varying values of the absolute potential of the spacecraft structure are

shown as well as the maximum _urface differential potentials. It can be seen that

during eclipse (lasting r0ttghly from 2_:30 to 0:45) the spacecraR, in steady-state,

achieves a negative potential of about 9 kV and a maximum surface potential differ-

ence of -4.5 kV _as reached towards dawn.

A similar ._nalysis was conducted for the peak of the winter-solstice period for

the 6 RV test subStorm. As expected, the l_)west _tegattve spacecraft strUctural

potential was achieved du_ing tl_is period. A _Ummary of steady-State values iS

presented in Table 4. A maximurh p0tentt_l difference of -4.6 kV was achieve_i.

AS can se seeri from. the summary tableS, the spacecratt stt'u_tural poterRial

varies widely reaching a m_irnum negative _/alue ot about 9 kV _t _elipse arid a

_inimum negative value of 450 RV du_'ing th_ winter-solstice period, iri this

l_articui_r des|gn, the stt_udturai expbsed metal was kept to a minimum and this
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Tabl0 3. Sul'nmary of Steady-Stat_ ResUlts tor 6 kV Substorm DUrint_ Fall-
Equinox

tMaterial with the Maximum
Potential Difference foe

AsaumOd Plasma Conditions

Absolute AV Between Absolute Potential
Local Pbtetltial Surface and of S/C Structure
Time (voile) S/C. Structure (volta) _"

23:00 -5950 • -4000 - 1950

24:00 -8750 200 -8950
(eclipse)

1:00 - 5950 -4000 - 1950

2:00 -5500 -4250 - 1250

3:00 -5500 -4250 - 1250

4..00 -5500 -4250 -1250

5:00 -5700 -4200 -1500

6:00 -5850 -4050 -1800

7:00 - 5350 -4350 - I000

8:00 -5200 -4500 -700

Table 4. Summary of Steady-StateResults for 6 kV Substorm During Winter-
Solstice

Material with the Maximum
: Potential Difference for

-: Assumed Plasma Conditions

Absolute _V Between Absolute Potential
Local Potential Surfaceand of S/C Structure
Time (volts) S/C StruCture (.volts)

23:00 -5250 -4400 -850

24:00 - 5"_00 -41 O0 - 1600

1:00 -5250 -4400 i -850

_. J _:00 -5200 -4500 1 -700-_: [ 3:00 -5200 -4500 -700

4:00 -5200 -4500 -700

5:00 -5200 -4500 -700

6:00 - 5350 -4350 - i000

" 7:00 -5050 -4600 -450

8:00 - 5050 -4f;O0 -459
#
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-_ help_ tO e_xplain the fact that the structure never- achieved _,ero potential When

various exposed parts were illuminated by the sUfl. Examination of the steady-

= ). state values Of all of the surfaces indicates that during eclipse all of the surfaces
_!; achieve almost the same absolute potential. This results from the fact that all

,!j: surtace_ have the _atue shadow aM plasma current source conditions.

;: t.+II}%CI.I._ION._ '
+

",: This paper ham been concerned with the development and application of a

=-!.: charging model for three-axiS stabilized spacecraft. The objective of the model

_ istodetermine the differentialpotentialsbetween the outer surfacesand the struc-
k: ture of a spacecraft throughout its geosynchronous orbit _hen under the influence

'_III of a geomagnetic substorm. Itwas assumed thatthe interactionbetween the plasma

_41'' and the spacecraR can be adequately represented by an equilibrium theory approach.
-: That is, the energy distribution-ofthe constituentplasma particlesCazibe expressed

_: in terms ofan omnldiVectionalMaxwell-Boltzmann tlistrib_tion.The plasma is

_!:: then represented by equivalent voltage dependent current sources and the outer

=,_=_ surfaces by simple Itlmpedelements. The resultingfirstorder differentialequa-
_ tionSare integratedand potentialdi_tributiozisdetermined. Sun-ilinmlnationcon-

_"_ ditions were determined by a solar/earth/spaceCraft orbit model and the intrinsic

=} capacitat_ce of th_ spacecraft with respect tc the plasma sheath is approximatetl by.

i!. it_ isolated capacitat_ce. Spacecraft charging simulation results, includ_ both

the transientalldsteady-statesolutions,have been presented.
_!,
'_. A .knowledgeof the potentialdistributionof the outersurfaces and structureof

_:_:'i_ the spacecraft throughout its orbltal path is important from a systems design and
=.._i analysisviewpoint. In general.Spacecraftmaterialsthatmaintainstresslevels

_: below their dielectric strength level should be selected, lfo from the analysis, it

-_ _ppears that the dielectric strength of various spacecraR surface materials will be

o_' exceeded, then, depe:ttlln_ on the ma_'nttude and repetition rate of the discharge

.:_: and location of the material, corrective action such as modtfi_atio:t or replacement
°'::;i ot the material.may be necessary. Thu_, the spacecraft charging simulation re-

_: suits can be useful in determining the selection and loc_tion Of the type of outer

_-io, _urfacethermal blartketo_ coatingmaterl&Istobe employed inthe designof

spacecraR.

o_

° i:
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The spacecraft cha_'glng sim_latiozl results can be useful in establlshing the

relatiO_shlp between the amount anti location of the exposed structu_'al metallic

parts aad the absolute potential bf the spacecraft structure. For example, from

the spacecraft chargin_ simulation results, it was found that when a maximum

amount of exposed metal was illuz,zlnated by the sun, the structural potential

achieved its lowest negative vMtie (beCauSe Of photoemlssion). At the same time,

the surface differential potential attained its maximum value. Conver, sely, when

a minimum amount of exposed metal was illuminated, the spacecraft structure '_

achieved its highest negative value and the surface differential potential attained

its minimum value. The above results demonstrate that it is des_.:'a_le to employ

design approaches that allow the structural potential to attain values between the

_urfaees "clamped" at zero potential and those with the highest negative potential

since the differential potentials are than minimized. The exact design approaches

taken will depend on the spacecraR configuration, orbit, and outer _UrfaCe

materials.

In the simulation analysis employing a step tunction, that is, tlme-independ-

ent_ representation _or the plasma substorm, the worst case differential potentials

occurred at steady-State and riot during the transient response. This representa-

tion is not realistic since the particle energies and current dert_ities are slowly

but widely Varying fUnctions of time. Because of the large time constants ot the

equivalent spacecraft circuit, a steady-state re_pDl_e using the actual time-

depetldent plasma forcing functions would never be reached. However, the trans-

ient response obtained with a step forcing function is indicative of the type of

response tliat can be expected when using the time-dependent forcing functions.

In addition, the steady-state response to a step forcing function can be used as an.

upper bound ot the wOrst-c_se differential potentials when the step function is used

w{"_ worst-case plasma values. This is supported by simulation results which

indicate that the magnitude of the differential potentials as well as the absolt_te

potentlal_ are directly related to the magnitude Ot the substorm particle energies

(temperatures) arid current densities.

Upon e_tamtning the spaeeCraR charging results, it becomes apparent that the

absolute potentials of the surfaces are controlled b_ the absolute _,otential of the

sti'ucture. Tlte structural potential _ttrt change instantaneously because of its

sm_ll intrinsic c_tpacitance. Ht_wever, the time respor_e ot the ditfere_titd poten-

tials l_ controlled by the iar_e time constants of theequivaient spacecraft electro-

static circtiit and the large potential constants of the forcing functions.

The model presented in this paper is ba_ed on an equilibrium theory approach. '

Gthi_r0 more _lecurate, but complex approaches take into consideration parHcles

trajector|es, their actual energy distributions, and determine the surface !
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! •

i potentials by solving Potssonts potential distribution equation in three dimensions.

Although the model is b_sed on simplistic assumptions, the simulation results

, obtairted for tl_e sti'uctural potertttal are in eelative agreement with the structural

_. pOtentialS measured on-bOard ATS-6, a three-axis stabilized spacecraft• The

i i! charging model predicts thtR upon entering eclipse, the spacecraft structu_'e falls
i ! almost instantaneously to a value of about -9 kV artd leaving eclipse the spacecraft

i !: structure rises almost instantaneously to a few hut_dred volts negative. Similar
L_ tratmientresultsintoattd_utof eclipsehave been observed on ATS-6. Inadditioll,

i _, the structural potential variations during the post-eclipse period, as predicted by

!_- the model, correspond, relatively, to measured results on ATS-6. For example,

examining the steady-state stress levels in the post-eclipse period, it can be seen

!!i:. that.the structural potential rises to a low negative value after eclipse but falls

!_: negatively towards dawn and then rises to a low- negative value at dawn. These

i_ results are in relative agreement w.ith data measured on board ATS-6.

i:!
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i Appen¢'ix A

i Electrostatic Capacifanee of $_veral Isolat ed, Thr_Dime_s_on01,
_ G_ametrieol Structure_,

!. I_il'IilIlllJCTIII_

In this appendix, equations for the isolated electrostatic capacitance of several "_

types of geometrical structures are given.

I. ! Sphere

1
The isolated capacitance of a Sphere is

i

i:
CIS O = 4_teoR (AI)

where CIS O is expressed in l'arads, R is the radius of the sphere in meters, and

e ° is the.permlttivity of.a vacuum (8.85 _ 10 -12 farads/meter).

i* L2 t:dbe

The capacitance of an isolated cube has been found to be 2' 3

i CIS O : 41re ° (0.656) _ (A2)

where i is the length of the sides of the cube in meters and CIS O is expressed in
farads.

i.3 |:ylinder

The capacitance of an isolated cylinder is given by

4_re0a

C IS() [ ] (A 3 )
In a + (a 2 + R2) 1/2

H

! • where (3is O is expressed in farads, a is one-half the length of the cylinder in
E meters, and R iS the radius of the cylinder in meter_..

*This formula was derived by the authors.
i

,. 2f;8

.

i.

r i i •
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I

, "lnirirai,.d Ii.m.

The capacitnn_.e of a trut_cated cone will be appz'oxtmated by the capacitance

of a cylinder with a length equal to that of tl_e cone, but the radius ot the equivalent

cylinder is the ave_'age ot the radii ot tb.e trUflC,_ted cone. Using Eq. (A3), the

results at'e

47rEoa

CIS 0 _ _ /_2)i/2] (A4) m..la + (a2 +In JL R

where _l _ (R 1 + R2)/2 and CIS O i_ expressed in farads and the radii expressed in
rneter_.

1.5 1'hi. lh'('lanlmlar and i':llipti_'.l l+lute+

The capacitance of thin rectangular and ellipticalplates have been derived in

a previous paper 5 and the results are given in graphical form for various valuv_

of length and width, and semlrnajor and sernnirninvr,axes. respectively.

1.6 Thin t:in'ulllt Plttle

The capacitance of a thin circular plate is given by 4

= 2R (111. I) (A5)
CISO 7r

where R is the radius of the circular disk in meters and CIS O is in picofaeads.
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