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ABSTRACT

This report describes the preliminary design effort (Subtask B) of a study
to define the most attractive low pressure, oxygen/hydrogen auxiliary propulsion
system (APS) for NASA space shuttle boosters and orbiters. The study was par-
formed for the National Aeronautics and Space Administration, Manned Spacecraft
Center (MSC), Houston, Texas, under Contract No. NAS 9-11012,

The study program was divided into two phases. The first, Subtask A, was a
conceptual subsystem definition phase to identify APS concepts best suited to
each of two baseline shuttle booster and orbiter vehicles. The Subtask A results
are summarized in Report MDC E0303, The second phase, Subtask B, (described in
this report) was a preliminary design of the selected subsystems to establish
greater understanding of subsystem design and operation. A summary of the over-
all study effort is provided in Report MDC E0293 and a design handbook containing
detailed descriptions of the selected booster and orbiter APS concepts is pro-
vided in Report MDC E0301.

The selected orbiter APS concept incorporates auxiliary liquid propellant
storage, passive tank mounted heat exchangers and a constant density control
scheme. The heat exchangers condition the main engine tank resupply prepellant
and have been mounted directly to the longitudinal stiffemers on the tank wall.
The stiffness associated with the heat exchanger tubes allowed a reduction in tank
rib height (02 tank only) and consequently reduced the heat exchanger weight
penalty. Propellant resupply requirements were minimized by a) using a compavrt-
mented O2 tank to hold main engine tank residual 02 liquid and b) by operating
the system in a mixed mode where liquid-vapor mixing and constant demsity control
are provided only during high usage periods. During low usage, propellant vapors
are extracted from the main engine tanks and supplied directly to the engines.
This reduces the control complexity required, and although engine inlet condi-
tions vary with tank pressure and temperature fluctuations, the effects on engine
performance are small.

The booster APS consists of propellant distribution and engine assemblies.
It operates entirely from main engine tank residual propellants, requiring no
additional propellant tankage, conditioning equipment or mixing assemblies. Ex-
traction of liquid residual propellants is prevented by g sensitive valves which

allow only vapors to be withdrawn.
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The APS design as defined during this study provides high performance and
high reliability and satisfies all of the design objectives. Technology require-
ments were identified and relate primarily to component size and dynamic response,
factors which generally can be resolved through normal development. The study

has shown that a low pressure APS, which is simple in design and operational ap-

proach, can fulfill shuttle requirements.

1id
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1. INTRODUCTION

Auxiliary propulsion will be required for space shuttle attitude and trans-
lational control. Operating on the same types of propellant {(i.e., oxygen and
hydrogen) as the shuttle main propulsion, these subsystems will have a minimum
service life of 100 mission cycles without major overhaul or refurbishment. Two
basic design approaches have been conceived for the auxiliary propulsion subsys-—
tem (APS): a high pressure concept, using turbopumps or turbocompressors to
achieve high operating pressure levels, and a low pressure concept, using the
main engine propellant tanks as an integral part of the subsystem and operating
at main engine tank ullage pressures. This report deals only with low pressure
APS concepts. It describes the scope and results of the second phase of a seven
month McDonnell Douglas Astronautics Company-East (MDAC-East) study effort under
MSC Contract No. NAS 9-11012, titled "Space Shuttle Low Pressure Auxiliary Fro-
pulsion Subsystem Definition''. The study was performed for the Natiomal Aerc—
nautics and Space Administration, Manned Spacecraft Center (MSC), Houston, Texas,
under the technical direction of Mr. N. Chaffee. A subcontract was extended to
Aerojet Liquid Rocket Company to provide component designs. The study objective
was "to conduct preliminary auxiliary propulsion subsystem studies, which (would)

generate information and data, for use in the overall shuttle vehicle effort”,

and which would, "identify attractive APS concepts, define their range of appli-
cability and limitations and identify critical technology areas and development
priorities'.

The high pressure APS study was conducted by MDAC-East under MSFC Contract
No. NAS 8-26248. Technical direction for this effort was provided by the NASA
Marshall Space Flight Center (MSFC) at Huntsville, Alabama.

The low pressure APS study program was divided into two phases., The first,
Subtask A, was a conceptual subsystem definition phase to identify APS concepts
best suited to each of two baseline shuttle booster and orbiter vehicles. The
Subtask A results are summarized in Report MDC E0303. The second phase, Subtask B,
(described in this report) was a preliminary design of the selected subsystems to
establish greater understanding of subsystem design and operation. A summary of
the overall study effort is provided in Report MDC E0293 and a design handbook
containing detailed descriptions of the selected booster and orbiter APS con-

cepts is provided in Report.MDC EO0301.

MCDORNELL DOUGLAS ASTROMAUTICS CORIPARY - EAST
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The selected orbiter APS concept requires separate liquid propellant storage
tanks to supplement main engine tank residuals. Propellant from the storage tanks
is circulated through tubular, passive heat exchangers where it is superheated and
injected into the main engine tanks. During major APS burns, warm propellant
vapore from the main engine tanks are mixed with additional liquid propellants in
a downstream liquid/vapor mixer and supplied to the engines at constant tempera-
ture and pressure (constant density). During low usage, propellant vapors are
extracted from the main engine tanks and supplied directly to the engines.

The selected booster APS consists of propellant distribution and engine
assemblies. These operate entirely from main engine tank residual propellants,
requiring no additional propellant tankage, conditioning equipment, or mixing

assemblies,

1-2
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2. STUDY APPROACH

The APS study was divided into two levels of design detail. The first, Sub~
task A, was broad in scope, and considered many concepts. During that phase,
attractive concepts were synthesized, theilr range of applicability defined, and

critical technology areas identified. A description of the Subtask A study
the resulting APS concept selections are presented in a separate report (MDAC-East
Report No. MDC E0303).

The second phase, Subtask B, is described in this report. This phase involved
preliminary design of the selected APS concepts. Study requirements were updated
to reflect revisions in shuttle requirements; APS thrust levels and engine arrange-
ments were defined, and a baseline subsystem design was established. Detailed sub-
system performance and component design studies were then initiated. Component
design, performance, and transient characteristics were evaluated in detail and
these characteristics, along with component technology requirements, were used to
update the baseline. A study flow diagram of the Subtask B study effort is sheown
in Figure 2-1. Detailed study efforts included in the tasks of Figure 2-1 and

required under Contract NAS 9-11012 are listed in Figure 2-2.
HASA
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1. Definition of instrumentation and controls (amount, type, duty
cyeles, response, operating ranges).

2. Definition of subsystem, assembly and component operating and
nonoperating environment for the various mission phases.

3. Determination of preliminary subsystem, assembly and component

weights and volumes.

Definition of component life requirements.

Determination of propellant conditioning requirements.

Determination of thermal control requirements.

Identification of new technology required.

Determination of subsystem reliability.

Determination of a preliminary failure mode and effects analysis.

Determination of inherent design and performance limits.

Definition of AFS/vehicle interfaces.

Definition of maintainability requirements.
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Propellant Storage

a. Determination of means of storing APS propellants.
b. Definition of methods of propellant positioning (if necessary).
¢. Determination of the method of loading propellants, e.g.,
external (from ground) or internal (from main tanks) including
use of consumables from the payload compartment (orbiter only).
d. Determination of the method of propellant egress from APS storage.
e. Determination of method of pressurizing propellants.

A

Propelliant Conditioning

a. Definition of power requirements.

b, Determination of required operating duty cycle.

¢, Definition of method of waste gas disposal ( if applicable).
d. Definition of stable operating regimes.

LT

.  Propellant Distribution

a. Determination of thermal control requirements.

b, Definpition of stability and dynamics characteristics.

a. Determination of required duty cycle.
L. Determination of propellant inlet conditions.
¢. Determination of envelope constraints.

SUBTASK B REQUIRED STUDIES

FIGURE 2-2
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VEBICLE AND SUBSYSTEM REQUIREMENTS AND CONSTRAINTS

Subtask B attitude control and maneuvering capability requirements for both

booster and orbiter elements of the low cross range space shuttle were defined in

the revised "Space Shuttle Vehicle Description and Requirements Dncument (SSVDRD)"

dated 1 October 1970,

This document is summarized in Appendix F herein.

The

revised (SSVDRD) vehicle acceleration requirements are tabulated in Figure 3-1

for convenience.

engines out.

SSVDRD failure criteria required that nominal acceleration levels

be achieved with one engine out, and minimum (safe) acceleration levels with two
NOMINAL |
VEHICLE ACCELERATIONS MINIIUN | e | MAXINUN
(BOOSTER) TRANSLATION, FT/SEC 0.0 0.0 — 0.0 0.0
PITCH, DEG/SEC? 0.3 0.5 — 1.0 2.0
YAW, DEG/SEC? 0.3 1.0 — 175 2.0
ROLL, DEG/SEC? 0.3 1.0 — 175 2.0
(ORBITER) TRANSLATION, FT/SECZ (+X) 0.5 0.65 — 3.0 7.0
(OTHER) 0.1 0.2 — 0.5 7.0
PITCH, DEG/SEC2 0.5 1.0 — 28 4.0
YAW, DEG/SEC? 0.9 13 —1.7 4.0
ROLL, DEG/SEC? ) 0.5 10 ~20 40
REENTRY BANK ANGLE (Y-R), DEG/SEC - 1.5 -
FAILURE CRITERIA
- NOMINAL ACCELERATION WITH ONE (1) ENGINE-OUT
~ MINIMUM (SAFE) ACCELERATION WITH TWO (2) ENGINES-QUT
*ALL ENGINES OPERATING
VEHICLE ACCELERATION REQUIREMENTS EIGURE 31

Subtask B requirements were similar to those of

several significant areas.

design effort should be directed only toward the low

booster vehicles.

The NASA determined that

cross range orbiter and

Subtask A, but differed in

the Subtask B preliminary

In addition, the Subtask A approach of defining low pressure

APS performance for a number of discrete velocity increments was revised in favor

of determining the most favorable distribution of +X axis maneuvers between APS

and OMS.

using current space shuttle study results.

Engine failure criteria and mission characteristics were also updated,

nominal requirements were met with one engine out, in addition to meeting safe

requirements with 2 engines out.
angle on the orbiter was also established.

A requirement for a coordinated yaw-roll bank
Orbiter missions were defined as a

short, third orbit space station rendezvous and a longer, seventeenth orbit space

station rendezvous.

A comparison of the most significant changes in both orbiter and booster

MCDORIRNELL DOUGILAS ASTRORNMNAUTICS CORIPARNY « EAST
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vehicle characteristics 1s shown in Figure 3-2. Main tank operating pressures

were rveduced and vapor temperatures were increased, resulting in less available
propellant vapor residuals. In addition, booster impulse requirements were nearly
doubled, and hydrogen liquid residuals were significantly increased. These changes
affected subsystem sizing and performance, in terms of reduced available pressure

budget and increased tank pressure ccllapse sensitivity.

BOOSTER ORBITER
SUBTASKA  SUBTASK B SUBTASKA  SUBTASK B
VEHICLE BURNOUT WEIGHT - LB 458,600 474,876 224,900 271,465
MAIN TANK PRESSURE
AT BURNOUT - LBF/IN%A
Hy 45 2 45 2%
0, 35 2 35 2%
WAIN TANK VAPOR TENP
AT BURNOUT - °R
Hy 200 450 200 454
0, 300 520 300 379
RESIDUAL LIQUID — LB
Hy 1,816 5,509 511 736
o 12,241 11,278 2392 2,440
MISSION TIME 6 MIN 6 MIN 5-7DAYS  1-3DAYS
TOTAL IMPULSE — LB-SEC 0.487 (10%) 0.864 (108 13.938 105  12.9 (108)

COMPARISON OF SUBTASK A AND B DESIGN DATA
FIGURE 3-2

Studies were conducted to define APS requirements in terms of thrust level,
total impulse, and number of engines required. Results of these studies are dis-
cussed below. Sensitivity to requirements and design criteria, such as bank angle
and engine failure criteria, are discussed in Section 7.

3.1 Booster -~ All low cross range booster mission requirements were met with
an engine arrangement using 2500 1b thrust engines. The arrangement consists of
eight vaw engines and twelve pitch-roll engines, shown schematically in Figure 3-3.
This arrangement differs from the engine locations specified in the SSVDRD, and
was selected because it was more adaptable to a low pressure APS and significantly
reduced subsystem weight. Figure 3-4 shows a comparison of booster subsystem
design points for both the revised arrangement and for the arrangement specified

32
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) O MASS CHARACTERISTICS
\X/ WEIGHT (LB) 474,876
7.017
v 2 WONENT OF INERTIA, 1 _
sLueFr2xi0d) 1 53.918
Iy 57,013
+X
.z BOOSTER ENGINE ARRANGEMENT FIGURE 34

CONCEPT SSVDRD ENGINE LOCATION | REVISED ENGINE LOCATIONS
SUBSYSTEM OPTIMUNS
Pc 10.5 111
MR 4.0 4.0
e 3.0 2.0
MAX LINE DIAMETER, IN
H, 9.3 9.4
0, 9.7 9.9
SUBSYSTENM WEIGHTS, LB
PROPELLANT NO APS WEIGHT PENALTY

ISOLATION VALVES, REG
LINES
ENGINES

(TOTAL)

(OPERATES ON BOOST RESIDUALS)

1392
1561
3072

6025

1151
608
2404

4163

WEIGHT COMPARISON OF ALTERNATE BOOSTER ENGINE LOCATIONS

PMCDORRNELL DOUGELEAS ASTRORMAUTICS CONMPARY - EAST
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in the SSVDRD. Figure 3-4 also provides a comparison of subsystem weights showing
that the revised locations have an 1860 1b weight advantage. Engine locatioms,
their function, and installation “ata are tabulated in Figure 3~5 for each engine
group shown in Figure 3-3. A comparison of attitude control acceleration require~
ments and subsystem performance capabilities is made in Figure 3-6. As this figure
shows, selected booster APS performance capabilities exceed all attitude control

requirements incliuding all failure mode conditions. The booster impulse require~

LOCATION MANEUVER NUMBER OF | ENGINE COORDINATES* |DIRECTION COSINE
ENGINES X Y z X Y zZ
1 - YAW 4 -425 4935 <3| 0 -1 0
2 +YAW 4 ~425 <935 <13 0 +1 0
3 ~ PITCH, + ROLL 3 ~1120 4151 ~149| 0 ~0.309 +0.95
4 ~ PITCH, - ROLL 3 ~1120  ~Isl ~143| 0 +0.309 +0.95
5 +PITCH, + ROLL 3 ~2569  +151 ~1430 0 0 41
6 + PITCH, ~ ROLL 3 ~2569  ~151 ~149] 0 0+l
*SEE APPENDIX F FOR COORDINATE SYSTEM. ALL DIMENSIONS ARE IN INCHES.
BOOSTER ENGINE LOCATIONS
Twe i
nty 2500 Lb Thrust Engines FIGURE 3-5
AXIS CONDITION ACCELERATION
(DEG/SEC?)
REQUIRED | MIN AVAILABLE
+PITCH  ALL ENGINES OPERATING - 0.744
ONE ENGINE OUT 0.50 0.620
TWO ENGINES OUT 0.30 0.495
- PITCH ALL ENGINES OPERATING - 1.120
ONE ENGINE OUT 0.50 0.935
TWO ENGINES OUT 0.30 0.747
+YAW  ALL ENGINES OPERATING - 1321
ONE ENGINE OUT 1.00 1.00%
TWO ENGINES OUT 0.30 0.661
+ROLL ALL ENGINES OPERATING - 1.285
ONE ENGINE OUT 1.00 1.028
TWO ENGINES OUT 0.30 0.771
* CRITICAL ACCELERATION
ATTITUDE CONTROL ACCELERATIONS ~ BOOSTER
Twenty 2500 Lb Thrust Engines FIGURE 3-6

3-4
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ment using this revised engine arrangement and the SSVDRD requirements is 864,000
lb-sec. This total impulse level can be satisfied by residual liquid and vapor
propellants in the main engine tanks (as discussed later in Section 4) dif re-
sidual hydrogen vapor temperature is reduced from the SSVDRD value of 450 R to
260 R. A method of achieving this reduction with a main engine feed line heat
exchanger is discussed in Paragraph 4.1.

3.2 Orbiter - Orbiter APS mission requirements were met with an engine
arrangement utilizing thirty-three 1080 1b thrust engines. The basic arrangement
is illustrated in Figure 3-7. This arrangement also differs from the engine loca-
tions described in the SSVDRD which were nonoptimum for a low pressure APS. Sev-
eral alternates were considered for the orbiter. An arrangement which minimized
number of engines, thrust level, and associated supply line length proved to be
most advantageous. This configuration, which is completely fuselage mounted,
resulted in yaw and roll axes impulse penalties during entry. However, the hard-
ware weight decreases which were achieved by eliminating wing-tip engines, far out-
weighed these penalties. Figure 3-8 summarizes incremental weight changes associ-~
ated with the revised orbiter engine locations (compared to the configuration

defined in Reference a). As shown, selected engine locations resulted in an

861 1b weight saving.

(9)
(1

(5) \/\.

a)/(

. @ MASS CHARACTERISTICS ;:'&BQR
WEIGHT (LB) 253613
+Z MOMENT OF INERTIA, I, 1.933
SLUGFTZx108) 1, 14177
Iy 14,559

. ORBITER ENGINE ARRANGEMENT
FIGURE 3-7

3-5
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REVISED SSVDRD
v
y/ )’\’ Sk
\(

S B

PARAMETE —%
NUMBER OF ENGINES 33 40
THRUST, LB 1080 B
TOTAL IMPULSE, LB-SEC 3.259 x 10° 3.259 x 10
SUBSYSTEM OPTIMUMS
CHAMBER PRESSURE, LBF/IN%A 13.9 136
MIXTURE RATIO 3 3
EXPANSION RATIO 8 8
SUBSYSTEM WEIGHTS, LB
PROPELLANT (H,) 1807 1761
(07) 5420 5284
TANK (H,) 577 568
0y 3y 23
THERMAL CONDITIONING 567 558
DISTRIBUTION SYSTEM 1532 1798
ENGINES 2587 2786
(TOTAL) (12707 ¢ ) (13568)*

* INCLUDES 600 LB WEIGHT PENALTY FOR WING TIP PODS.
{y )} SELECTED

ORBITER ENGINE LOCATION COMPARISON
FIGURE 3-8

Figure 3-9 summarizes number .of engines, their function, and installation
data. ©Six engines were required for +X translation. Eight yaw engines are
employed for on-orbit yaw and lateral maneuver requirements; they also provide
primary yaw authority during reentry. These are backed up by canted pitch-roll
engines., The pitch-roll engines would be activated if the differential between
actual and commanded yaw rates exceeded predetermined values.

Selected engine arrangement capability is compared with SSVDRD requirements
in Figures 3~10 and 3~11. Inspection of the figures shows that all attitude con-
trol accelerations and translational accelerations were achieved. Nominal accel-
eration levels are provided with one engine out, and minimal (safe) acceleration
levels with two engines out, as required. Available reentry bank angle accelera-

. . 2 ' . s
tion is 1.89 deg/sec”, which exceeds the nominal minimum requirement of 1.5.

=

3-6
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SUBTASK B
NO.OF | ENGINE COORDINATES* | DIRECTION COSINE
LOCATION . MANEUVER EnGINEs X v > X 7 5
1 ~X TRANSLATION 1 -260 0 ]-300 | -1.0 0 0
2 ~X TRANSLATION 1 ~29 -45 | =300 | ~0.926 | +0.374 0
3 -X TRANSLATION 1 ~296 +45 | =300 || -0.926 |-0.374 0
4 + YAW, +Y TRANSLATION 2 ~564 ~73 | =347 0+1.0 0
5 ~YAW, ~Y TRANSLATION 2 ~564 +73 | =347 0 -10 0
6 ~YAW, +Y TRANSLATION 2 ~1954 | -80 |-300 0|+1.0 0
7 + YAW, -Y TRANSLATION 2 -1954 | +80 |-300 0-1.0 0
8 ~PITCH, ~ROLL,REENTRY:YAW 2 ~653 -135 | 203 0 |+0.707 |+0.707
9 +PITCH, - ROLL,REENTRY-YAW 2 ~653 +135 | =343 0 |-0.707 |~0.707
10 +PITCH, + ROLL,REENTRY+YAW 2 -653 -135 | =343 0 |+0.707 |-0.707
1t ~PITCH, + ROLL, REENTRY-YAW 2 653 +135 | =203 0 |-0.707 |+0.707
12 + PITCH,~ROLL, REENTRY ~ YAW 2 ~1865 | 110 | -195 0 |+0.707 |+ 0.707
13 ~PITCH, -ROLL, REENTRY + YAW 2 ~1865 | +110 | -405 0 |~0.707 |~0.707
14 ~PITXH,+ ROLL, REENTRY - YAW 2 -1865 | -110 | -405 0 |+0.707 |-0.707
15 +PITCH,+ ROLL, REENTRY + YAW 2 ~1865 | +110 | -195 0 |-0.707 |+0.707
16 + X TRANSLATION 3 ~2180 | -25 |-188 |+0.993 |+0.027 |-0.114
17 + X TRANSLATION 3 ~2180 | +25 |-188 |.0.993 |~0.027 |-0.114
*SEE APPENDIX F FOR COORDINATE SYSTEM. ALL DIMENSIONS ARE IN INCHES,
ORBITER ENGINE LOCATIONS
Thirty-Three 1080 Lb Thrust Engines FIGURE 3-9

ON-ORBIT ACCELERATION REENTRY ACCELERATION
AXIS CONDITION (DEG/SECZ) (DEG/SECZ)
REQUIRED |MIN AVAILABLE | REQUIRED | MIN AVAILABLE
+PITCH| ALL ENGINES OPERATING - 1.140 - 1.326
ONE RING OUT 0.50 0.856 1.00 1.00#*
TWO RINGS oUT 0.30 0.570 0.50 0.612
+YAW* | ALL ENGINES OPERATING - 0.928 - 2,330
ONE ENGINE OUT 0.50 0.696 1.30 2.052
(ONE RING OUT) (1.30) (1.384)
TWO ENGINES OUT 0.30 0.464 0.90 1774
(TWO RINGS OUT) (0.90) (1.636)
+ROLL | ALL ENGINES OPERATING - 3.050 - 3122
ONE RING QUT 0.50 2.269 1.00 2.322
TWO RINGS OUT 0.30 1.498 0.50 1.522

* YAW ENGINES BACKED UP BY PITCH-ROLL ENGINES DURING REENTRY
**CRITICAL ACCELERATION

ATTITUDE CONTROL ACCELERATIONS - ORBITER
Thirty-Three 1080 Lb Thrust Engines

PAICDONRELL DOUGLAS ABTROMAUTICS COMPANY = EAST

FIGURE 3-10
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AXIS

COMDITION

+ X

X

ALL ENGINES OPERATING
ONE ENGINE OUT
TWO ENGINES OUT

ALL ENGINES OPERATING
ONE ENGINE OUT
TWO ENGINES OUT

ALL ENGINES OPERATING
ONE ENGINE QUT
TWO ENGINES OUT

ALL ENGINES OPERATING
ONE ENGINE OUT
TWO ENGINES QUT

TRANSLATIONAL ACCELERATION
(FT/SECH)
REQUIRED | WIN AVAILABLE

- 0.820
0.65 0.684
0.50 0546

- 0.381
0.20 0.254

0 0.085

- 0.549
0.20 0.411

0 0.275

- 0.775
0.20 0582

0 0.388

TRANSLATIONAL ACCELERATIONS - ORBITER

Thirty-Three 1080 Lb Thrust Engines

FIGURE 3-11

For the engine locations described above, orbiter APS total impulse require-

ments and impulse usage history were defined for SSVDRD mission time lines. Re~

sults are shown in Figure 3-12 for the two basic third and seventeenth orbit ren-

dezvous missions.

tively.

Total impulse requirements are 12.5 and 12.9 M lb-sec, respec-
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4. BASELINE APS DESIGN

Final baseline designs resulting from the Subtask B study are discussed in
the following paragraphs. Designs shown reflect requirements and engine arrange-
ments presented in Section 3. Operational, performance, and component design
characteristics are presented in Sections 5 and 6 along with discussion of alter-
nates and selection justification.

4.1 Booster APS - The booster APS consists of propellant distribution, and
engine assemblies, as shown schematically in Figure 4-1. The subsystem operates
entirely from main engine tank vapors in a blowdown mode, over a pressure range of
26 to 17 lbf/inza. Acceptable propellant quality is ensured by g-sensitive liquid/
vapor separators. The booster APS conforms fully to all SSVDRD requirements and

design criteria, except for a reduction in hydrogen main engine tank vapor tempera-

TN S e
VALVES
<m w3 2 L AN \e

{ MAIN H, TANK

= e

P
=

e
p ¢ 1

Voo B
4
L &
B ¢4
L%
1§V
P
" |

ENGINES - 20 AT 2500 LB THRUST

BOOSTER BASELINE AUXILIARY PROPULSION SUBSYSTEM FIGURE 4-1
4-1
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ture at main engine shutdown. Temperature reduction can be readily accomplished

(Figure 4-2) with passive heat exchangers, mounted to main engine hydrogen feed

line, for pressurant conditioning during launch. In this manner, sufficient hydro-

gen residuals for full APS usage can be accommodated without effecting booster and
orbiter main engine commonality, and without requiring separate APS propellant
storage.

A summary of baseline design features is shown in Figure 4~3., The distribu~

MAIN ENGINE TANK
PRESSURE REGULATOR

~——Hy PRESSURANT HEX

@ v“:“ '."‘.'.
" 075N DIA X100 IN LONG
o

|

HYDROGEN
TAP OFF(450%

MAIN ENGINE
PUMP TURBINE

_J FIGURE

4-2
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SUBTASK B
0, Hy
WAIN TANK
INITIAL VAPOR TEMPERATURE, °R 520 260
INITIAL PRESSURE, LBF/IN%A 2% %
MINIMUM PRESSURE, LBF/IN%A 17 17
ENGINE AND DISTRIBUTION SYSTEM
DESIGN ENGINE INLET PRESSURE, LBF/INZA 14 14
DESIGN ENGINE INLET TEMPERATURE, °R 400 150
ENGINE THRUST, LB 2500
MIXTURE RATIO 2.0
CHAMBER PRESSURE, LBF/INZA 1
EXPANSION RATIO 21

BOOSTER BASELINE DESIGN SUMMARY
FIGURE 4-3

tion and engine subsystem were sized to provide 2500 1b thrust at the end of blow-
down, where inlet pressures and temperatures are at their lowest values. A mixture
ratio of 2.0 and an expansion ratio of 2:1 were used for minimum subsystem weight.
Twenty engines, arranged as shown in Appendix E, Figure E-7, provide required con-
trol accelerations. Subsystem installation takes advantage of main engine pres-
surant lines which extend nearly the full length of the vehicle; thus, required
APS manifolding is minimal. All engines have been installed to be accessible from
the exterior of the vehicle.

4.2 Orbiter APS - The orbiter APS consists of propellant storage, condition-
ing, control, distribution, and engine assemblies, shown schematically in Figure
4~4. The subsystem uses auxiliary liquid propellant storage; passive, tank~mounted,
neat exchangers for main tank resupply conditioning; and liquid/vapor mixers to
provide constant outlet density during major APS operations. Orbiter impulse
requirements make a simple blowdown subsystem (as used on the booster) impractical.
Some means of controlling main engine tank conditions, and an auxiliary propellant

storage system, is required. Use of liquid/vapor mixers for control provides two

primary advantages. First, variations in engine inlet conditions (flow rate, tem-
perature, mixture ratio) are minimized, reducing engine development and design
problems, and limiting subsystem performance variations. Second, increased burn
duration capability is obtained. Main engine tank flow requirements are greatly
reduced, since a large percentage of total engine flow is supplied as liquid to
the liquid/vapor mixer inlet. This reduces main engine tank pressure decay during
a burn, allowing increased burn durations.

Inherent subsystem simplicity is maintained by using passive, tank-mounted

43
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heat exchangers, which utilize main tank heat capacity to vaporize and superheat
the resupply propellant. During off periods, main engine tank temperature 1s
restored by orbital heating. Mission interactions with subsystem performance have
been minimized by decoupling the heat exchangers from the varying thermal environ-
ment of the wvehicle skin.

Feed line weight is minimized by using existing main engine tank pressuriza-
tion lines as primary APS distribution lines. These lines extend nearly the full
length of the orbiter, and result in significant APS weight savings. The remainder
of the distribution assembly has been sized to provide minimum subsvstem weight by
balancing line weight penalty as a function of frictional losses, and engine weight
penalty as a function of chamber pressure.

Baseline characteristics are summarized in Figure 4-5 and subsystem installa=
tion is shown in Appendix E, Figure E-8. The APS provides all attitude control
functions and all small maneuvers. Large, +X axis maneuvers are provided by a
separate orbit maneuver subsystem (OMS) located in the aft portion of the vehicle.
The OMS provides a maneuvering capability of 1150 ft/sec, covering three or four
large burns. The APS provides the remainder of the maneuvers, which consist ef

burns less than 40 ft/sec. The resulting APS impulse requirement is 3.345 (100)

1b-sec. —
0, Hy
LIQUID STORAGE AND PRESSURIZATION ASSEMBLY
PROPELLANT WEIGHT, LB 4495 2499
PROPELLANT TANK PRESSURE, LBF /IN2A 35 40
PROPELLANT TANK VOLUME, FT3 67 834
PRESSURIZATION TYPE COLDH, | PUNP
PROPELLANT SUPPLY PRESSURE, LBF/IN2A s 35
HEAT EXCHANGER
AREA, FT? 1,790- 3,100
TUBE LENGTH, FT 17.5 15.0
TUBE SPACING, IN. 40 10.0
TUBE DIAMETER, IN. 0.394 0.298
NUMBER OF TUBES 308 248
LIQUID-VAPOR MIXER
OUTLET TEMPERATURE, °R 200 150
INJECTOR INLET PRESSURE, LBF/IN?A 30 30
LIQUID THROTTLE RATIO 10:1 10:1
GAS-SIDE PRESSURE DROP, LBF ‘IN%D 1.0 1.5
ENGINE AND DISTRIBUTION ASSEMBLIES
DESIGN REGULATED PRESSURE,LBF ‘INA 20 20
MAXIMUM LINE DIAMETER, IN. 8.3 8.3
ENGINE INLET PRESSURE, LBF/IN?A 15.7 15.7
ENGINE THRUST, LB 1,080
CHAMBER PRESSURE, LBF. IN2A 13.7
MIXTURE RATIO 3
EXPANSION RATIO 8:1
ORBITER BASELINE
DESIGN SUMMARY EIGURE 4.5

4-5
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5. SUBSYSTEM OPERATION AND PERFORMANCE

This section describes subsystem operation and performance, first in terms of
individual component characteristics, then in terms of the integrated subsystem
operating in a mission duty cycle. Finally, transient performance characteristics
are defined.

5.1 Component Performance Characteristics -~ The most significant components,

the engine, heat exchanger (orbiter), and liquid/vapor mixer (orbiter) received the
majority of study effort since their performance strongly influences total APS per—
formance and has a large impact on subsystem weight. The remaining components,
such as the propellant tankage are significant in terms of weight or technology but
do not appreciably effect performance. Design of all components is discussed in
Section 6.

(a) Engine - The engine is a film cooled design, using multiple coaxial
injection elements and pilot operated, coaxial propellant valves. Booster and
orbiter engines employ the same basic design concept, but have been sized to pro-
vide specific thrust requirements at chamber pressures, expansion ratios, and mix~
ture ratios which result in minimum weight for each subsystem. The resulting
booster engines are designed to provide 2500 1b thrust at a mixture ratio of 2.0
and expansion ratio of 2:1. Orbiter engines provide 1080 1b thrust at a mixture
ratio of 3.0 and an expansion ratio of 8:1. Baseline thruster design character-
istics are summarized in Figure 5-1. Minimum engine inlet temperatures were estab-
lished at the level required to prevent oxygen condensation caused by heat transfer
between propellants. Required temperatures are shown in Figure 5-2 as a function

of chamber pressure and mixture ratio. Selected minimum temperatures were 150°R

ORBITER BOOSTER

THRUST ~LB 1080 2500
CHAMBER PRESSURE - LBF/IN.ZA 13.7 11.0
MIXTURE RATIO 3.0 2.0
EXPANSION RATIO 81 21
INLET TEMPERATURE = 05/H, ~ °R 200/150 400/150
SPECIFIC IMPULSE - SEC 376.5 342
FLOW RATE (TOTAL) - LB/SEC 2.87 7.31
FUEL FILM COOLANT - PERCENT 15 10
WEIGHT - TOTAL ~LB 77.0 149.0

APS ENGINE DESIGN SUMMARY EIGURE 5-1

(82}
!
s
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&
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MR - 1.5 o

- 25— ——

130 Ei = i) —-—'/ \
.

\

HYDROGEN TEMPERATURE - %R

7
/
N

100 UNACCEPTABLE
)
160 180 200 220 240 260 300
OXYGEN TEMPERATURE - °R

MINIMUM INJECTOR INLET TEMPERATURES
FIGURE 5-2

(hydrogen) and 200°R (oxygen). Figures 5-3 through 5-6 present orbiter engine
design performance sensitivity (MR, Pc, F, Isp) to inlet temperature and inlet
pressure variations and Figures 5-7 through 5-10 present booster performance
sensitivity. Large performance variations result from opposing changes in hydrogen
and oxygen temperatures and pressures. However, during a mission duty cycle, fuel
and oxygen inlet conditions tend to vary in the same direction, which greatly
reduces their effect on engine performance. As an example, mixture ratio variation
from nominal design point is approximately +1.0 for an opposing variation in inlet
pressures of +5 lbf/inz, No significant mixture ratic variation occurs for a like
pressure variation of +5 lbf/inz.

(b) Heat Exchangers (orbiter only) - The orbiter heat exchangers consist of

tubes mounted directly to main engine propellant tankage. The heat exchanger oper-
ates essentially as a heat sink, absorbing heat from the propellant tank wall. Dur-
ing off periods, tank temperatures are restored by solar heating of the vehicle

skin and reradiation to the tank. Since tank resupply (heat exchanger) flow rate

is matched to tank outflow rate, the resupply enthalpy is directly proportional to
the amount of heat extracted from the tank. As more heat is absorbed from the tank
wall, resupply propellant temperature increases and final main tank vapor tempera-

5.2
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ture and pressure increases. Therefore;, heat exchanger design effectiveness can be
measured by the resulting temperature and pressure of the vapor in the canks after
resupply operation. The effect of heat exchanger size (length, spacing, number of

tubes) on main tank vapor properties are shown in Figure 3-11. Number of tubes,

ZAV=158 FPS 4
- ~ Oxygen 00 [ Hydrogen NO. TUBES
5 FINAL TANK . (SPACING)
[x
= NO. TUBES, PRESS, PSIA
S 400} FINAL TANK (SPAC!NG) 40
W PRESIS' PSIA
oo 18— 25 M&zam
e O i — =y 00Fup ———
& 14 @ ) o CONDITIONS Hy Og
= 12}“ o P OLBF/INA 24.4 7.4
= 200 - 200 T DEG R 521 468
= e g
f— |
3 -
£ 00LA. 100
= 0 10 20 30 4 0 2 ) 60 80
HEAT EXCHANGER TUBE LENGTH ~ FT
ORBITER MAIN TANK HEAT EXCHANGER FIGURE 5-11

and tube épacing, reflects use of the entire tank perimeter. Thus, the length

shown is the length of tank covered by the heat exchanger. The oxygen tank is
smaller and has less available heat capacity, thus, the effect of heat exchanger
characteristics on final vapor properties is more critical. TFor that reason, the
oxygen heat exchanger covers the entire tank and a large number of closely spaced
tubes are used (154 tubes at 4 in spacing). TFurther decreases in tube spacing would
significantly increase number of tubes and heat exchanger weight, but would provide
little improvement in final tank pressure or temperature. For the hydrogen heat
exchanger, main engine tanks are larger and resupply flow rates are less, therefore

heat exchanger design characteristics are less critical. Heat exchanger panel
the

n

dimensions have been selected to give approximately the same final pressure a
oxygen tank. A heat.exchanger design length of 60 feet was selected, with 62 tubes
spaced 10 inches apart.

In order to reduce pressure drop encountered with long tubes, heat exchangers
have been divided into parallel panels (two oxygen and four hydrogen). Although
thermal performance is degraded since the heat exchangers are shorter, the resuli-
ing subsystem performance (shown in Figure 5-12) is good. Data shown arve for the
most critical mission phase, the period just prior to docking. During all cther
mission phases, resupply fluid and tank wall temperatures are significantly higher

5-11
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Braking and Docking Maneuvers FIGURE 5-12

than the lowest values shown.

(¢) Ligquid/Vapor Mixers (Orbiter only) - The liquid-vapor mixer consists of

injecter and mixing chamber, liquid flow controller, and downstream regulator.
During major APS operations, the mixer provides conditioned vapors at a prescribed
temperature of 150°R (Hz) and 200°R (02) and an "Iris" valve controls downstream
pressure to 19 lbf/inza. Liquid/vapor mixer operation is illustrated in Figure 5-13
for & typical entry mission phase. During operation, main engine tank pressure
decays from 24 to 19 lbf/inza and vapor temperature decays from 500°R to 410°R.
Associated with tank vapor temperature decay, the quantity of liquid that can be
conditioned to a prescribed outlet temperature is reduced, and liquid flowrate must
be throttled.

Cavitating venturis are used to decouple liquid propellant feed from down-
5-12
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stream {(mixer) pressure variations. Pilot-input commands from the flight computer
signal the number of engines firing. This information establishes a feedback con-
trol bias for valve positioning. The controller senses downstream pressure and
commands an iris regulator setting, resulting in 19 1bf/inza outlet pressure,

Ligquid wvapor mixer assembly is used in a duval-mode of operation, in which the

mixer is utilized only during major maneuvers. During low APS usage, the iris
regulator remains fixed at its last position and no liquid flow is provided to the
mixer, Instead, main tank vapors provide all APS propellant. In this way, re-
quired component operating ranges have been minimized.

5.2 Mission Duty Cycle - Component performance characteristics cited above,

and interactions between compomnents, have been evaluated for both booster and
orbiter. Resulting subsystem performance is presented below.

5.2.1 Booster Mission Duty Cycle - The booster APS utilizes a simple blowdown

concept without auxiliary liquid propellant storage, resupply, or mixing. APS per-
formance depends on initial propellant vapor conditions (those existing at end of
main engine shutdown). Figure 5-14 shows the effect of initial tank vapor tempera-
ture on final tank pressure. For a mixture ratio of 2.0 and SSVDRD specified tem-—
peratures, final hydrogen pressure will be approximately 13 lbf/inza and final
oxygen pressure will be 16 1bf/in2a. With a mixture ratio of 3.5 the same final
pressure {(15.2 lbf/inza) would be obtained for each propellant. If lower initial
vapor temperatures are provided, the amount of vapor at end of boost and final tank
pressure will be increased accordingly. The effect of final tank pressure on sub-
system weight is shown in Figure 5-15. These weights include the added vapor
residuals attributable to reduced vapor temperatures. The SSVDRD conditiomns

result in unnecessarily high weight penalties for the APS and, since pressurant

gas temperatures could be relatively easily reduced by incorporating a heat
exchanger {(Section 4), lower initial vapor temperatures were selected as they were
much more compatible for design with the low pressure APS.

A design pressure level of 17 lbs/inza was selected to provide a positive
pressure in the main tanks when in the atmospheric environments. Design vapor tem-
peratures for this pressure are 260°R (HZ) and 520°R (02). An additional consider-
ation in pressure level selection was engine ignition limitations. A minimum pres~-
sure of Z to 3 lhf/inza is required in the chamber for reliable ignition. With
17 lbffinza tank pressure, propellant cold flow results in a chamber pressure of
approximately 5 lbf/inza, well above ignition limits.

Resultant booster tank pressure and temperature profiles during the mission

5-14
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are shown in Figure 5-16. As shown, pressures and temperature variations result
in only minor performance variations. Engine mixture ratio varies from 2.0 to 2.2,
and thrust decays from 3800 to 2500 1b.

5.2.2 Orbiter Mission Duty Cycle — The orbiter subsystem operates in a blow-

down mode (i.e., all propellant is extracted from main engine tanks and there is no
downstream liquid injection) during periods when demand is low. When a major APS
operation, such as a midcourse correction, is required, only part of the propellant
is extracted from the main engine tank; the remainder is supplied as liquid to the
mixing assembly, significantly reducing main engine tank pressure decay. Propel-
lant, equal in quantity to that withdrawn, is resupplied to the main engine tank
from the storage tank through the passive heat exchanger.

APS velocity allocations were based on a study to evaluate the optimal APS/OPM
5-16
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impulse split. Figure 5-17 presents study results. Shown are combined OMS and

APS weights as a function of velocity allocated to the OMS. Both the third and
seventeenth orbit rendezvous cases of Reference (b) were investigated. An RL-10-A3
OMS engine was assumed for this analysis. As shown in Figure 5~17, initially the
combined weight of the two propulsion subsystems decreases markedly due to high OMS
performance. This decrease in weight continues for the largest three or four mis-
sion maneuvers. These maneuvers are: deorbit burn, orbit height adjustment,

coelliptic burn, and phasing burn. As illustrated, the number of OMS burms in-

L]
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creases very rapidly after these four major maneuvers, without appreciable decrease
or increase in total OMS/APS weight. This results principally from increased start
losses when the OMS engine is required to perform small maneuvers. Hence, an
effective degradation of OMS specific impulse occurs. Inspection of Figure 5-~17
shows that approximately 1150 ft/sec should be allocated to the OMS. This provides
near minimum overall subsystem weight and only three to four starts on the liquid
engine. In analvyzing Figure 5-17, a major uncertainty is the amount of propellant
required for each OMS engine start. Precise evaluation of this quantity requires
detailed evaluation of OMS installation and was beyond the scope of this study.
However, in order to assess the validity of conclusions drawn from Figure 5-17,

OMS engine start losses were varied, and resulting combined subsystem weights were
evaluated. In Figure 5-18, propellant losses for each OMS start were varied from
50 to 200 1b. As shown, at very low start losses no optimum impulse split occurs,
but only a very small weight gain can be realized by increasing the number of OMS
starts above four. Based on these results, it was concluded that an OMS velocity
allocation of 1150 ft/sec was valid, independent of start loss.

5-18
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Mission profiles for low pressure APS are illustrated in Figure 5-19 and 5-20.
t engine shutdown, main engine tanks contaln residual propellants. Normal heat
leak into the tank will warm the propellant vapor and boil off liquid residual.
Without APS usage, tank pressure would increase and propellant would be vented.
During the initial mission phase, the APS operates almost entirely from residual
liquid boiloff in the main engine tanks. When (later in the mission) tank pressure
has decayed and liquid residuals have been exhausted, main engine tank pressure is
restored by resupplying conditioned propellant wvapors.

During low demand attitude control operations, all propellant is supplied from
the main engine tank. Engine inlet conditions are allowed to vary with tank tem-
verature and pressure fluctuations. When a major APS operation is scheduled, only
a part of the propellant is extracted from the tamk, and engine inlet conditions
are closely controlled by adding liquid to the mixer. After each major APS opera-
tion, propellant vapor in the main engine tank will be relatively cool and tank
walls will have been chilled because of heat removal for propellant conditioning.
Normal radiation from vehicle skin to tank walls will restore tank wall temperature
which, in turn, will transfer heat to propellant vapors, raising gas temperature
and pressure, Thermal interactions between tank and propellant vapors as well as
the effect of envirommental variations, are presented in Appendix B.

Third orbit rendezvous missions last approximately one day. Residual boiloff
propellant is used for nearly the entire mission, and tank pressures and tempera-
tures remain fairly high. The seventeenth orbit rendezvous mission is more crit-
ical, since tank pressures and temperatures drop significantly, especilally during
braking maneuvers just prior to docking. Also, less main engine tank liquid
residuals are available for this mission. Thus, the seventeenth orbit mission
establishes APS propellant requiremenfs.

-y

5.3 Transient Performance - The objective of this study was to investigate

possible dynamic instabilities within the subsystem. APS engines can be fired con-
tinuously or in a pulse mode, with valves controlling propellant flow located
adiacent to the engine. Gaseous propellant is carried from the main engine tank’
to valves by long lengths of tubing; therefore, rapid opening or closing of propel-
lant valves can excite oscillations which could alter engine operation. Since fuel
and oxidizer acoustic velocities are much different, and line length to the engine
varies between propellants, a different oscillation frequency for each propellant
could cause transient variations in engilne mixture ratio. The study was confined
to feed and engine assemblies, because the large main engine tank volume effec-
520
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tively decouples these assemblies from the remainder of the subsystem at that point.

To determine engine-feed assembly transient characteristics, a digital com-
puter program was developed to simulate engine start and shutdown transients. Tran-
sient models were developed for lines, valves, orifices, regulators, and engines,
and were integrated into a common computer program to model the distribution net-
work downstream of the main engine tank. Program output includes a time history of
temperature, pressure, and weight flow at any desired location. In addition,
engine performance parameters such as specific impulse, mixture ratio, and chamber
gas temperature are calculated.

Typical engine start and shutdown characteristics are shown in Figure 5-21.
Data are for a single pitch-roll engine, operating in a limit cycle mode with
relatively warm propellants (445°R hydrogen, 380°R oxygen). Ignition occurs 26 ms
after the valve on signal is received, and 90 percent of steady state chamber pres-
sure is achieved at 42 ms. Propellant valve operation was delayed 20 ms to allow
for pneumatic pilot valve response, and the off signal was given when valves
reached full open (50 ms). The resulting impulse bit was 61 1lb-sec, and steady
state chamber pressure was 13 lbf/inza. Effect of inlet temperatures on impulse
bit are shown in Figure 5-22,

Control engine response characteristics with +X maneuver engines firing and
cold propellants (150°R hydrogen, 200°R oxygen) are shown in Figure 5-23. Although
+X engine firings contribute to increased line flow, the low temperatures obtained
from liquid wvapor mixing actually result in higher control engine chamber pressure
than is realized during limit cycle operation.

Line surge pressures were evaluated using worst case conditions of six +X
translation engines firing and maximum inlet pressure of 30 1bf/in a, correspond-
ing to a failed~open regulator and maximum main tank vent pressure. Surge pres-
sures of 42 and 23 percent were obtained in hydrogen and oxygen lines, respectively.
Effect of line diameter on surge pressures is shown in Figure 5-24. Increases in

line diameter have relatively little effect on surge pressures.

5~22
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6. COMPONENT/ASSEMBLY DESIGN AND INSTALLATION

Component trade studies, component design selection and definition, and
component placement and installation are discussed in this section. PFPerformance
characteristics of the most critical compoments (thruster, heat exchangers and
liquid/vapor mixers) are discussed in Section 5. Design characteristics for the
major components and subassemblies are described below. Characteristics peculiar
to boosters or orbiters are noted where applicable.

6.1 Engines - Engine assemblies include propellant control valves, injector,
combustion chamber, and nozzle. Orbiter engine design features and dimensions are
shown in Figure 6-1. Engine cooling is achieved by hydrogen film cooling along
the interior of the combustion chamber and nozzle wall. Combustion chambers and
nozzles are fabricated of thin wall, high temperature Haynes Alloy while the head
end is fabricated of aluminum to minimize assembly weight. The two subassemblies
are attached by welding to a bimetallic ring. Chambers and nozzles are externally
insulated with Min-K~2000 insulation. Ignition is achieved by a sequenced elec-
tric spark torch, while fast response, minimum pressure drop, coaxial poppet valves
provide good pulse performance.

The booster engine is similar to the orbiter engines. Differences result
from higher thrust level and lower expansion ratio. Booster engines are designed
for an expansion ratio of 2:1; a conical nozzle shape was selected to minimize
divergence losses. The orbiter engine uses an expansion ratio of 8:1 and has a
Rao nozzle contour. A summary of engine physical characteristics is shown in
Figure 6-2 and engine weight characteristics are shown in Figure 6~3.

6.2 Valve and Actuation System - Candidate low pressure valves are shown in

Figure 6-4. The type of valve employed depends on the particular valve applica-
tion. Coaxial poppet valves were selected for the engines to achieve reguisite
cycle life, sealing, and response characteristics. Motor operated, vigor-type
valves shown in Figure 6-5 were selected for isolation valves where high cycle life
and fast response are not required. Motor operated iris valves (Figure 6-6) were
the choice for pressure regulators since they provide low pressure drop at full
flow conditions and exhibit a linear stroke flowrate relationship (linear Kw curve).
Figure 6~7 shows the engine valve in the closed (non-actuated) position. A

single pilot valve controls both H2 and 0, valves on each engine. Total valve

2
response time including pilot valve is 50 ms, helium actuation requirements are

0.52 X 10"3 1b/ecycle. A schematic of the orbiter pneumatic subsystem is shown in

61
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Figure 6~8. The booster APS employs a similar subsystem. Three and one-half
pounds of helium on the booster, and eleven pounds on the orbiter, have been pro-
vided to satisfy mission requirements. Each pneumatic circuit is backed up by a
quantity measuring fuse, which shuts in the event of a broken line or failed-open
pilot valve. Thus, after a single failure, the entire pneumatic supply will not
be wented. The aft orbiter helium supply was separated into two storage tanks to
provide fail-safe capability in case one tank is depleted. A third tank is
located forward to avoid long distribution lines.

6.3 Propellant Distribution Assembly - The propellant distribution assembly

supplies propellant to the engine assemblies and provides isolation of engines in
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case of failure, The distribution assembly consists of ducts, isolation valves,
and linear and angular compensators. Figure 6-9 presents the APS booster distri-

bution assembly installation and Figure 6-10 shows the orbiter installation.
Ducting design characteristics are summarized in Figure 6-11. The minimum gage
dimensions were specified from a survey of F-4 and DC-10 aircraft ducting as shown
in Figure 6-12.

Propellant ducts are fabricated of minimum gage aluminum, and main engine tank
pressurization lines are used as main trunks of the APS distribution network as
discussed in Appendix E. Isolation valves and manifolds were located close to
the engine groups, to minimize line length and tovprovide isolation for each
engine ring in the event of engine or valve failure. This avoided control axis
cross~coupling that would otherwise be encountered when an engine failed. Each
line section includes linear and angular compensators, as required, to absorb nor-
mal vehicle manufacturing tolerances, to absorb differences in thermal expansion
between ducts and vehicle structure, and to compensate for structural motion. A
typical line and compensator installation is shown in Figure 6-13. Aluminum bel-
lows, used in linear and angular compensators, are significantly lighter than
comparable stainless steel compensators. Although aluminum has not been exten-
sively used for such an application in the past, data from bellows manufacturers
show that aluminum bellows will be satisfactory as long as high pressures and
large deflections are avoided. Detailed distribution assembly analysis and com-
ponent design characteristics are presented in Appendix E.

6.4 Main Tank Liquid/Vapor Separation - Both booster and orbiter use liquid/

vapor separators to prevent liquid ingestion into the distribution assembly. Due
to differing requirements, the design approach between booster and orbiter varies.
Sufficient residual propellant (liquid and vapor) remain in the booster main

engine tanks to provide the entire booster APS requirements. Bulk liquid propel~-
lant is prevented from entering the APS distribution network through the use of
g-sensitive valves of the type shown in Figure 6-14. Short booster mission times
preclude propellant orientation in accordance with zero-g conditions, and propel-
lant will move in relation to acceleration or inertial forces. Any shift of
acceleration forces that will cause bulk liquid to move toward the valve will also
close the valve from that direction. The valve is located on a standoff, ensuring
that the wvalve will not be submerged when residuals are located along the tank wall.

The Orbiter APS is characterized by long orbital periods, where zero "g"

conditions are encountered. Also, the orbiter main propulsion is shut down by
6--10
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DISTRIBUTION LINES
WATERIAL 2219 ALUMINUM
DENSITY (LB/IN.3) 0.101
DESIGN TEMPERATURE (°R% 530
ULTIMATE STRESS LBF/IN.Z | 64,000
ULTIMATE SAFETY FACTOR | 2.0
MINIMUM GAGE (INS)
LINE DIAMETER 2-4 | 0.022
45 |0.035
6-9 | 0.049
COMPENSATORS
TYPE, ANGULAR SOCKET/BELLOWS
LINEAR IN LINE BELLOWS
MATERIAL 2219 ALUMINUM
ISOLATION VALVES
TYPE VISOR
MATERIAL ALUMINUM
ACTUATION DC REVERSIBLE MOTOR
DRIVE WITH CLUTCH BRAKE
DISTRIBUTION ASSEMBLY DESIGN CHARACTERISTICS
(Oxygen and Hydrogen)
FIGURE 6-11
MAXIMUM | MINIMUM
MODEL USAGE DIAMETER GAGE MATERIAL REMARKS
(INCHES) | (INCHES)
F—4 ENGINE BLEED & 2.0 0.016 STAINLESS | 0.020 MINIMUN HANDLING
VENT 4.5 0.020 STEEL
Fd FUEL 3.0 0.035 STAINLESS
STEEL
Fed AIR CONDITIONING 2.5 0.028 ALUMINUM | MINIMUM BASED ON BENDING,
LINE PRESSURE = 25 PSI
DC~10 | ANTI ICE 2.5 0.025 STAINLESS
0,035 STEEL
DC-10 | PNEUMATIC BLEED,| 6.0 0.025 TITANIUM | TITANIUM USED TO SATISFY
ENVIRONMENTAL 400 TO 700°F THERMAL
CONTROL ENVIRONMENT
DC~10 | FUEL VENTS 3.5 0.028 ALUMINUM | 0.035 MINIMUM GAGE FOR WELDING
4.5 0.035

AIRCRAFT DUCTING SURVEY
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738
=17 )

ANGULATION
COMPENSATORS (2 REQ'D)

MARMAN
COUPLING

\ PRESSURE BALANCED

MOTION COMPENSATOR

N MARMAN

COUPLING

TYPICAL LINE INSTALLATION FIGURE 6-13

TORUS COLLECTOR
RING

PROPELLANT
TANK (TOP)

COLLECTOR TUBE
{4 PLACES)

VALVE
POPPET
= ACCELERATION FORCES
BOOSTER TANK OUTLET VALVE
(G SENSITIVE VALVE POPPET) FIGURE 6-14
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velocity command instead of propellant depletion; hence, a large quantity of
‘residuals could remain at time of orbit insertion. Active liquid/vapor separators
for the orbiter tank are impractical, since there is no ready means of predicting
where thg bulk liguid might settle in a zerc g environment. Hydrogen residuals
rapidly boil off and provide little, if any, APS weight advantage. For this
reason, hydrogen residuals are dumped through the main engines after main engine
shutdown to avoid liquid ingestion into the feed system and/or main engine tank
pressure collapse. The reverse ig true with liquid oxygen residuals. They boil
off more slowly and represent a large potential weight savings.

A tension bulkhead, just forward of the common bulkhead, has been added in

the L02 boost tank to contain liquid oxygen residuals. The tension bulkhead is
so placed as to ensure that all L02 will have completely drained from the boost
tank main compartment priocr to main engine cutoff. The operation of this compart-
ment tank is shown in Figure 6-15. During launch, propellant is extracted from
the main tank until the liquid level reaches the top of the segmented compariment.
Then, the valve to the segmented compartment is opened, allowing both ténks to
drain. At shutdown, residual propellant will be located in feed lines and segmented
compartment only. Although residual quantity will depend on amcunt of f£light
performance reserves utilized and specific mission requirements, at least 2440 1b
will be available.

The original 0, Tank bulkhead was designed to withstand compressive forces

resulting from 1iqu§d oxygen head during launch. The added tension bulkhead will
relieve the lower bulkhead of liquid oxygen head, thereby allowing a reduction
in lower bulkhead weight. A summary of resultant weight is shown in Figure 6-16.
The segmented compartment was obtained for a net weight penalty of only 50 1bs,
including valves. This weight penalty is minor compared to potential oxygen
residual availability.

6.5 Liguid/Vapor Mixer (Orbiter Only) - For major APS operations, part of

the propellant is obtained from the main engine tamk, the remainder supplied as
liquid from the propellant storage assembly to the liquid/vapor mixer. During low
demand attitude control operations, all propellant is extracted from the main
engine tank; there is no downstream injection in the liquid/vapor mixer. Ligquid/
vapor mixer design is shown in Figure 6-17. It consists of a liguid injection
element, hyperthin vanes located normal to the gas stream, and a downstream mixing
length to allow liquid vaporization. Initially, when the temperature of the gas
being removed from the main engine tank is high, a large quantity of liquid can be

615
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ORBITER TANK WEIGHT
COMPARISON BOOST TANK COMFIGURATION
ITEM COMMON COMPARTMENTED 0, TANK
BULKHEAD

COMMON BULKHEAD 950 LB 540 LB

COMPARTMENT BULKHEAD - 210 LB

VALVES - 175 LB

LINES AND MOTION COMPENSATORS | ~ 5B

950 LB 1000 LB

ORBITER TANK WEIGHT COMPARSION

FIGURE 6-16

|

5.094 N,
ITEM 5 | H,
MIXER WIDTH A, IN , 740 | 8.20
HEIGHT B, IN 7.40 | 8.20
LENGTH L, IN 500 | 5.00
DROPLET DIAMETER, IN. 0.002| 0.002 070 1N %
TOTAL PRESSURE DROP 10 | 15 TYPICAL VANE "
GAS STREAM, LBF/IN
PRESSURE DROP, LIQUID, LBF/INZ 10.0 18
GAS STREAM MACH NO. 8.2 0.2
LiQUID DISCHARGE VELOCITY MAX,FPS | 20 4
PROPELLANT LIQUID/VAPOR MIXER FIGURE 6-17
6-17
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used. As tank temperature and pressure decay with time, liquid flow rate must be
decreased to maintain desired mixer outlet conditions. More propellant must then
be extracted from the main engine tank to support steady state conditions at the

mixer outlet. Figure 6-~18 gives the liquid flow rates required to maintain desired

8
’/’ 2

. e

e 02

PERCENT LIQUID FLOWRATE

20
OUTLET MIXTURE TEMPERATURE
02: 200°R
Hy: 150°R
0 |
200 300 400 500 600 700

INLET GAS TEMPERATURE, °R

LIQUID/VAPOR MIXER

IIQUID FLOW RATE TO PROVIDE REQUIRED OUTLET TEMPERATURES
FIGURE 6-18

cutlet temperatures. Flow control is provided by a motor driven cavitating venturi
throttle valve which decouples the flow control from pressure oscillations in the
mixer. Mixer weights are 11.4 and 17.4 1b for hydrogen and oxygen, respectively.
These weights do not include approximately 11 1lbs. for a liquid throttle valve.

6.6 Heat Exchanger (Orbiter Only) - Orbiter heat exchangers are used to

condition resupply liquid propellant when main engine tank pressure is less than

24 lbf/inzs Resupply propellant is vaporized, then superheated in the heat
6518
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exchanger. The heat exchanger consists of thin wall, aluminum tubing mounted

directly on the tank walls (which serve as a heat sink). Figure 6-~19 illustrates

HEAT EXCHANGER PANELS
ORBITER TANK CONFIGURATION EAT EXCHANG ’

/(TWO 0,, FOUR Hy)
@" g‘i ‘ r J, l
=="
l .| ] l
| [ | = |

| 28 FY BIFT—

=

TANK CONSTRUCTION

BOND AND RIVET
{1/8 IN RIVETS AT 0.6 IN SPACING

0.68 x 0.75 LG CUTOUT 2

(TYPICAL EACH TANK RING)

HEAT EXCHANGER

TANK LONGITUDINAL ATTACHMENT

STIFFENERS ¢
4 IN. SPACING (Op) &
10 IN. SPACING (H))

TANK RING
EVERY 20 i,

PASSIVE HEAT EXCHANGER CONCEPT

FIGURE 6-19

tube mounting to tank longitudinal structural stiffemers. Tube and mounting

section modulus adds to longitudinal rib stiffness, permitting a reduction in tank
rib height and thus weight. However, the weight reduction can only be applied to

the 02 tank since the H, rib height is at the minimum required for riveting.

The oxygen heat exihanger is divided into two panels, each with 154 tubes,
approximately 0.4 in. in diameter. The hydrogen heat exchanger is divided into
four panels, each consisting of 62 tubes, 0.3 in. in diameter. These panels are
connected in parallel, and serve to reduce heat exchanger frictional pressure drop.

Specific heat exchanger design characteristics were defined on the basis of sub-
619
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system performance (as presented earlier in Paragraph 4.1), and are shown in

Figure 6-20,

TYPE

LOCATION

ATTACHMENT

TUBE CHARACTERISTICS
MATERIAL
DENSITY, LBM/IN
DESIGN TEMPERATURE, °R
ULTIMATE STRESS, LBF/IN 2
ULTIMATE SAFETY FACTOR
MINIMUM GAGE, INCHES
MAXIMUN MACH NUMBER

PANEL DIMENSIONS
NUMBER OF PANELS
NUMBER OF TUBES
TUBE LENGTH, FT
TUBE SPACING, IN
TUBE DIAMETER, IN

MULTIPLE TUBE/HEAT SINK
INTEGRAL WITH MAIN ENGINE TANK WALL
TUBE FLANGE RIVETED TO TANK LONGITUDINAL STIFFENERS

2014-T6 ALUMINUM
0.101

530

64,000

20
0.022
0.3
OXYGEN HYDROGEN
2 4
154 62
17.5 15.0
4.0 10.0
0.3%4 0.298

HEAT EXCHANGER DESIGN CHARACTERISTICS

FIGURE 6-20

6.7 Propellant Storage — After boost, sufficient residual propellants are

available in the booster main engine tanks to meet APS requirements. Therefore,
auxiliary booster APS storage is not required. However, in the case of the orbiter
impulse requirements are much greater, and auxiliary propellant storage is required.
A detailed summary of the study performed to define orbiter APS tank design charac-
teristics ig presented in Appendix D, and a brief summary of selected tank design
ig described below.

Orbiter APS LH2 and L02 are stored in spherical tanks located immediately for-
ward of the payload bay. This location provides ready access for maintenance
through the payload bay. The tanks are supported at three points by a low conduc-
tivity support structure. Tank support legs are made of fiberglass tubes, 6.0 in.
in diameter and ranging in thickness from 0.035 in. to 0.10 in. Pin joints attach-
ment points accommodate deflections caused by loads and thermal expansions.

The LO, tank is pressurized by regulated helium pressure. The He pressurant

2

storage tank is mounted inside the LO, tank to take advantage of the volumetric

efficiency gained by storing the preszurant at LO2 temperatures. Hydrogen pressure
is provided by low head rise boost pumps located in the tank sump. The LH2 tank
will be prepressurized with helium to 40 1bf/in2a. As the LH2 supply 1s depleted,
tank pressure will drop to approximately 20 lbf/inza. This pressure will maintain

an NPSP of at least 0.5 lbf/inza at pump inlets, and will suppress nucleate boil~-

520
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ing (which could occur during operation at saturated conditions).
The tankage concept consists of a 2219 aluminum basic pressure vessel, a laver

of cryofoam (on the LH, tank only), a cooling shroud made of 0.125 in. diameter

2
aluminum tubing brazed to a very thin aluminum shroud, a blanket of high perfor-

mance insulation (HPI) and a fiberglass outer shell. Figure 6~21 illustrates the

COOLING SHROUD

(1 WIL FOW)
FIBERGLASS 1/8 DIA
OUTER SHELL——\ TUBING
P4 \\\ INSULATION BLANKET

(ORANGE PEEL)

Na
: oy PURGE PORT
S~ =y - :
{ — \k r LAUNCH G

REENTRY G

Ny PURGE.

He FILL/VENT

He REGULATOR

(Lo, TANK ONLY) FILL

/ PRESSURE VESSEL
(2219-T87 AL)

CRYOFOAM

(LH TANK ONLY)— :
LH, PUNPS (3) Sy SCREEN CHANNEL
: 1/ ACQUISITION RINGS (3)
H, THERMO ‘ TANK
VENT / OUTLET
PROPELLANT TANK INSULATION/COOLING CONCEPT FIGURE 6-21

tank assembly. Cooling shroﬁd temperature is maintained by continuocus hydrogen
vent. LH2 is extracted for cooling, expanded to provide a 7°R temperature drop,
then routed to shroud, tank supports, and penetrations, where vaporization is com-
pleted. The fiberglass outer shell serves as an environmental shield for the tank

insulation. On the ground, constant purge of GN, provides an inert atmosphere

which protects the HPI against contamination andzcorrosion. In orbit, the fiber-
glass shell is vented to vacuum to enable the HPI to function efficiently. On
re~entry, helium (for hydrogen tank) or nitrogen (for oxygen tank) is purged
through the cavity between the outer shell énd the tank to prevent the shell
from collapsing, and to prevent atmospheric contamination of the HFPI.

Propellant acquisition is accomplished through the use of screen channels

shown in Figure 6-22. Screen channels are so located that some portion of the

o
i
M
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screen will always be "wetted," thereby ensuring communication with the outlet.

A summary of the tankage assembly weights are shown in Figure 6-23.

HYDROGEN | OXYGEN
(LB) (LB)
STRUCTURAL COMPONENTS
PROPELLANT TANK 224 sl
FIBERGLASS SHELL (INCLUDING SUPPORTS) 98 2
PROPELLANT ACQUISITION DEVICE 105 3
TANK MOUNTS 62 50
TANK INSULATION
FOAM SUBSTRATE 31 -
INSULATION BLANKET 3 32
INSULATION SUPPORTS 10 3
COOLANT LOOP
SHROUD 28 2
VALVES, CONTROLS 4 4
PRESSURIZATION 159 32
TOTAL 820 233

PROPELLANT STORAGE ASSEMBLY — TANK WEIGHT SUMMARY

RACIDORRNELL DOUGLAS ASTRORMAUTICS COMPARIY « EAST

FIGURE 623

623




LOW PRESSURE APS
SUBTASK B

incurred is:

2

total mission requirements.

discussed in Paragraph 4.1.
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7. SUBSYSTEM WEIGHT AND DESIGN SENSITIVITIES

penalty associated with increased main engine subsystem weight,

pressurant (H2 only)
liquid/vapor separation valves
heat exchanger (H2 only)

Total weight penalty

distribution assembly (1708 1b).

660 1b
141 1b
57 1b
858 1b

The 660 1b H, pressurant weight penalty represents the increase in vapor residual

The remainder of the subsystem consists of engine assemblies (3081 1b) and

[
COMPONENT (NO.) 5 W“m"T'ﬁB
2 2
PROPELLANT NONE REQUIRED, MAIN ENGINE
TANK RESIDUALS ARE UTILIZED
MAIN ENGINE PROPULSION MODS (63) ( 795)
PRESSURANT PENALTY 0 660
LIQUID/VAPOR
SEPARATION VALVES (1) 63 78
HEAT EXCHANGER 0 57
PROPELLANT DISTRIBUTION ASSEMBLY (657) (1051)
LINES 221 350
COMPENSATORS, LINEAR (23) 104 251
COMPENSATORS, ANGULAR (46) 64 105
ISOLATION VALVES (21) 22 345
ENGINE ASSEMBLIES (3081)
ENGINES (20) 2980
PNEUMATIC SUBASSEMBLY
HELIUM 35
TANKS (3) 3.0
VALVES (28) 12.5
REGULATORS (3) 9.0
LINES 12
TOTAL (5647)

.BOOGSTER APS WEIGHT

MCDORNRNELL DOUGLAS ASTROMAUTICS CORMPARY - EAST

29 JANUARY 1971

7.1 Booster APS - A weight breakdown of the booster APS is presented in
Figure 7-~1. No propellant is required; main engine tank residuals provide the
Use of main engine residuals results in a weight

The weight penalty

associated with the reduction in initial hydrogen tank vapor temperature as
The total weight penalty (858 1b) has been assessed
against the APS, and is included in the total booster APS weight of 5647 1b.

FIGURE 7-1
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Weight sensitivities are shown in Figure 7-2. Subsystem welght is strongly
dependent on engine thrust level and chamber pressure, and is relatively insensi-
tive to mixture ratio and expansion ratic. Subsystem weight sensitivity to main
engine tank pressures is very high, if the weight penalty associated with higher
pressures is included. Thus, no pressure increases above those specified in
Reference {a) are recommended. The subsystem design points, based on the weight

optimums shown in Figure 7-2 are:

s . 2
chamber pressure 11 1bf/in"a
mixture ratio 2.0
expansion ratio 2:1

These values reflect the effect of engine performance on line sizing (in terms
of flowrate requirements) and the effect of engine performance on main engine

final tank pressure (as discussed earlier in section 5.2).
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7.2 Orbiter APS - A weight breakdown of the final orbiter APS design is
presented in Figure 7-3. Weights are shown for propellant, main engine propulsion
modifications and each orbiter APS assembly. The propellant weight shown includes
usable, vent and APS residual, but does not include the usable main engine
residuals which furnish 1913 1bs of oxygen. However, the weight penalty required
to utilize the main engine residuals, i.e., the compartmehted tank weight penalty
of 50 1b has been charged to the APS. 1In addition, the weight of main engine
pressurant line bypass valves, required to accomodate the liquid/vapor mixer

concept, have been included.

WEIGHT, LB
COMPONENT (NO)
0, Hy
PROPELLANT () @496 (2499)
MAIN PROPULSION MODS. (92) (42)
COMPARTMENTED TANK 50 -
PRESSURANT LINE BYPASS VALVES (2) 42 42
PROPELLANT STORAGE ASSEMBLY 233 (820)
TANK, INSULATION, AND VENT 164 556
PRESSURIZATION SUBASSEMBLY 32 159
PROPELLANT ACQUISITION 37 105
PROPELLANT CONDITIONING ASSEMBLY (149) @m
LINE AND MANIFOLDS 37 64
TUBING 47 98
ATTACHMENT FLANGES 56 154
VALVES (5) 9 11
LIQUID. VAPOR MIXING ASSEMBLY {96) (108)
MIXER 17 11
THROTTLE VALVE » 2
CONTROL VALVES (5) 44 55
REGULATORS (2) 13 20
DISTRIBUTION ASSEMBLY (565) (107)
LINES 174 258
COMPENSATORS, LINEAR 97 127
COMPENSATORS, ANGULAR 68 76
ISOLATION VALVES (24) 2% 246
ENGINE ASSEMBLES (2734)
ENGINES (33) 2541
PNEUMATIC SUBASSEMBLY
HELIUM 11
TANKS (3) 103
VALVES (42) 19
REGULATOR (5) 14
LINES ‘ 46
(TOTAL) (12868)

* INCLUDES REQUIREMENTS FOR OMS PROPELLANT SETTLING (120,000 LB-SEC).

ORBITER APS WEIGHT FIGURE 7-3
i3
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Orbiter weight sensitivities are shown in Figure 7-4. As with the booster, no
weight advantage is incurred with main engine tank pressure increases, if the main
engine tank welght increase associated with higher pressures is included. The
subsystem is sensitive to both requirements (thrust, impulse) and subsystem
design pavameters (chamber pressure, mixture ratio, area ratio, and engine inlet

temperature). Subsystem design parameters are:

2
chamber pressure 13.71bf/in"a
mixture ratio 3:1
expansion ratio 8:1

engine inlet temperature
hydrogen 150°R
oxygen 200°R
The chawber pressure, mixture ratioc, and expansion ratio were selected to provide
winimum subsystem weight, The engine inlet temperatures were selected as low as
possible consistent with the propellant condensation temperature limits discussed

in section 5.,1.
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The weights shown in Figure 7-3 reflect failure criteria of nominal accelera-
tion with one engine out and minimum acceleration with two engines out. A refer-
ence design point using nominal acceleration with all engines and minimum acceler-
ation with two engines out has been determined to provide a common base for com-
parison to the high pressure APS (Reference b). The latter failure criteria
allows a reduction in engine thrust level with a commensurate reduction in sub-

system weight. A weight breakdown of the reference design point is shown in

Figure 7-5.
COMPONENT (NO) WEIGHT, LB
0, Hy
PROPELLANT (%) ) (4935) (2645)
MAIN PROPULSION MODS ( 92 ( 4
COMPARTMENTED TANK 50 -
PRESSURANT LINE BYPASS VALVES (2) 2 42
PROPELLANT STORAGE ASSEMBLY { 246) ( 853)
TANK, INSULATION, AND VENT 173 581
PRESSURIZATION SUBASSEMBLY 35 164
PROPELLANT ACQUISITION 38 108
PROPELLANT CONDITIONING ASSEMBLY | ( 149) ( 327)
LINE AND MANIFOLDS 37 64
TUBING 4 98
ATTACHMENT FLANGES 56 154
VALVES (5) 9 11
LIQUID VAPOR MIXING ASSEMBLY { 9,) ( 108)
MIXER 17 11
THROTTLE VALVE 2 )
CONTROL VALVES (5) 44 55
REGULATORS (2) 13 20
DISTRIBUTION ASSEMBLY (477 ( 598)
LINES 150 219
COMPENSATORS, LINEAR 86 115
COMPENSATORS, ANGULAR 52 58
ISOLATION VALVES (18) 189 206
ENGINE ASSEMBLIES (2231)
ENGINES (24) 2052
PNEUMATIC SUBASSEMBLY
HELIUM 11
TANKS (3) 103
VALVES (42) 15
REGULATOR (5) 14
LINES 36
(TOTAL) : (12799)

* INCLUDES REQUIREMENTS FOR OMS PROPELLANT SETTLING {120,000 LB - SEC)
ORBITER APS WEIGHT

REFERENCE DESIGN POINT
' FIGURE 7-5
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In addition, the use of integrated APS/OMS tankage, such as that used on the

high pressure APS was investigated.

the high pressure APS Subtask B report, Reference (b).

Tankage assembly weights have been based on

Tankage and pressurization

assembly weights were scaled to the APS propellant requirements and adjusted to
The resulting sub-

2

reflect the APS pressurization requirements of 35 1bf/in"a.

system weights are shown in Figure 7-6.

76

caigig
WEIGHT, LB
COMPONENT (NO) 5 A
2 2
PROPELLANT (*) (4496) (2499)
MAIN PROPULSION MODS ( 92 { 42
COMPARTMENTED TANK 50 -
PRESSURANT LINE BYPASS VALVES (2) 42 42
PROPELLANT STORAGE ASSEMBLY (129) (674
TANK, INSULATION, AND VENT 82 489
PRESSURIZATION SUBASSEMBLY 32 114
PROPELLANT ACQUISITION 15 71
PROPELLANT CONDITIONING ASSEMBLY | ( 149) ( 32)
LINE AND MANIFOLDS 37 64
TUBING 4 %8
ATTACHMENT FLANGES 56 154
VALVES (5) 9 11
LIQUID/VAPOR MIXING ASSEMBLY { 96) { 108)
MIXER 17 11
THROTTLE VALVE 22 22
CONTROL VALVES (5) 44 55
REGULATORS (2) 13 2
DISTRIBUTION ASSEMBLY { 569) (700)
LINES 174 258
COMPENSATORS, LINEAR 97 127
COMPENSATORS, ANGULAR 68 76
ISOLATION VALVES (29 226 246
ENGINE ASSEMBLIES (2734)
ENGINES (33) 2541
PNEUMATIC SUBASSEMBLY
HELIUM 11
TANKS (3) 103
VALVES (42) 19
REGULATOR (5 14
LINES 46
(TOTAL) (12618)

* INCLUDES REQUIREMENTS FOR OMS PROPELLANT SETTLING (120,000 LB - SEC
ORBITER APS WEIGHT

INTEGRATED OM§/APS PROPELLANT TANKAGE

RACDONMELL DOUGILAS ASTROMAUTICS COMPARY » EASYT
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8. TECHNOLOGY CRITIQUE

Space shuttle control requirements and low pressure APS installation features
dictated thrust 1evels of 2500 1b for the Booster and 1080 1lbs for the Orbiter.
Also, shuttle reuse requirements necessitate that the subsystem perform 100
missions without major refurbishment. These requirements are far beyond those
of any previous control propulsion system, and no APS components capable of
satisfying these requirements exist today. The purpose of this study was to
develop a low pressure APS design to fulfill these requirements. The resulting
low pressure APS is simple in design and operational approach. Contrcls for the
subsystem are not complex and, at the low pressures of interest, component designs
capable of satisfying both performance and life requirements appear to be relatively
straightforward. Discussion of technology considerations for the APS are presented
separately for each major assembly.

8.1 Propellant Storage Assembly Technology - In this assembly, there are two

principal areas of technology uncertainties: (a) the pressurized, dual wall insu-
lation assembly, and (b) design of the propellant acquisition device. Based on
presently available data, high confidence can be placed in the performance of
aluminized Mylar insulation with regard to its basic heat transfer characteristics.
Numerous developmental programs related to high performance insulation have been
conducted, and shuttle requirements do not tax the capability of this type of heat
protection system. However, no programs have been conducted to demonstrate the
reusability of this kind of insulation. It is known, though, that any form of
condensation within Mylar layers can cause severe degradation in thermal charac-
teristics. For this reason, the tankage system incorporates a fiberglass ocuter
shell, pressurized during boost and entry and vented for all orbit operations.
This prevents contact between insulation and atmospheric air (with resultant risk
of condensation between Mylar layers). Data are available which indicate that
multilayer insulation of this type will freely vent without significant pressure
gradients when no protective covering is used. However, data are not available to
show whether or not repeated pressurization and vent cycles would alter high
performance insulation heat transfer characteristics nor to show that venting could
be readily accomplished when a protective éovering is used.

The principal concern in propellant storage assembly design is the propellant

positioning device. Data are available which clearly demonstrate the validity of

8-1
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the surface tension approach for propellant positioning. However, all previous
work has been conducted on relatively small scale tanks, and there has been very
little experience with cryogenics. To date, the maximum size of surface tension
device has been limited to approximately 1 ft in diameter. Screen production
forecasts indicate a size limit in the order of 5 ft or less. Since APS propellant
tanks will be 9.5 ft and 5.5 ft in diameter for hydrogen and oxygen, respectively,
a novel approach to positioning will be required to accommodate screen fabrication
limitations. The basic nature of surface tension screen devices prohibits the
presence of gas in the contained propellant cavity, as this could result in a
breakdown of liquid/gas interface (with a resultant loss of pressurant). Thus,
heat leak into a cryogenic surface tension device must be minimized, since boiling
within the containment device would produce vapor. An acceptable screen design
coensisting of ring channels to capture the propellant appears to solve the fabri-
cation problem, and use of a vapor cooled shroud will interrupt any heat flux into
the device. However, significantly more effort will be required to establish
surface tension screen design data and to demonstrate achievement of successful
design.

8.2 Conditioner Assembly Technology - Technology considerations associated

with this assembly are related to component design and performance and to questions
asgociated with subsystem operational analysis.

8.2.1 Conditioner Assembly Component Design - Principal concern over compo-

nent design lies with the passive heat exchanger. As currently conceived, the
heat exchanger consists of thin wall, aluminum tubing in intimate contact with
booster tank longitudinal stiffeners. Analyses to date have not given in depth
attenticn to the cost and difficulty of incorporating such a device on the tank.
While it zppears to be a simple and straightforward operation, this basic premise
should be examined in detail from the viewpoint of design verification testing and
tank fabrication cost.

The function of the heat exchanger is to vaporize liquid propellants from
storage tanks and superheat them to required conditioning temperature. This
requires & fluid phase change within the heat exchanger, and this has been classi-
cally difficult because of stability and chugging considerations. Due to the
nature of the heat sink approach to conditioning, heat input will not be well
controlled. When two major operations occur in a short period of time, the tank

wall will be relatively cool for the second burn, resulting in a repositioning of
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phase change location within the heat exchanger. Thus, heat exchanger sizing

will require consideration of a range of phase change positions within the heat
exchanger. Test data are required to define both performance and operating charac-
teristics of the heat exchanger. Since convective effects induced by flow velocity
will certainly dominate, testing in an earth gravity environment should provide
satisfactory data. Heat exchanger performance is also, to a large degree, con-
trolled by radiation from vehicle structure to tank walls. This, of course,
dictates heat exchanger recovery time. Ultimately, vehicle skin and heat protec—
tion system should be simulated in a vacuum facility, but for the present, system
analysis should be relatively accurate for defining heat exchanger recovery time.
Thus, simulation with the heat protection system is not seen as an immediate
technology need.

8.2.2 Conditioner Assembly Analysis - Uncertainties related to analysis of

the conditioner assembly center around basic thermodynamic models of the assembly
during operation. There are three related areas which require more detailed
investigation: ‘

(a) motion and vaporization rates of the main-engine liquid residuals after
main engine cutoff; this has a large impact on the amount of APS propel—
lant required and fixes initial boundary conditions for analyses of APS
operation,

(b) mixing of resupply propellants during a major APS operation; this defines
the state of propellant vapor being removed from the tanks, which, in
turn, impacts heat exchangers, mixer and APS propellant requirements, and
defines initial conditions for APS recovery time analyses,

(¢) heat transfer characteristics within the tank following a major APS
operation; these define rate of temperature and pressure recovery within
the tank following a burn, and defines gas temperature profiles to be
expected at start of the next burn.

Liquid Residuals Effects - APS analyses to date have considered only nominal,

trapped liquid residuals. This is the minimum quantity, hence the most conserva-
tive assumption from the standpoint of subsystem weight definition. At main
engine shutdown, approximately 3200 1b of liquids will be trapped. Based on

extrapolation of Saturn S-IVB data, vaporiéation rates have been forecast. These,

coupled with APS mission profiles, indicate that only 610 1b (or 19 percent) of
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this could actually be used by the APS (without modificafion of main engine tanks).

Two additional aspects not fully covered by APS studies should be considered:
(1) control of vaporization to make more liquid available to the APS (resulting in
a very large potential weight savings), and (2) the fact that since orbiter engines
will be shutdown on a velocity command, rather than upon propellant depletion, much
more liguid could be onboard at shutdown.

Regarding control of vaporization, extrapolated S-IVB data identify an equiva-
lent liguid position or wetted wall area. Based on this area, vaporization rates
are calculated for particular vehicle/tank interface and mission characteristics.
Liquid position is of primary importance to the analyses but because of the low
gravity environment, and multiaxis control accelerations, it is very difficult to
define. The current method of using extrapolated S-IVB data is not an adequate
base for subsystem design.

Secondly, since wetted wall area is of predominant importance, knowledge of
the amount of residual liquid is a key factor. As previously stated, this infor-
mation will not be known with accuracy for the orbiter.

Two approaches to resolution of these factors are possible: (1) control of
ligquid quantity and/or contact area, and (2) knowledge of liquid position and
effects of control accelerations on position. The former approach was elected
for the orbiter and the latter for the booster. Additional effort is required to
define residual containment control requirements (orbiter) and fluid dynamic
effects (booster).

Vapor Mixing Analysis - During each major APS burn, propellant is extracted

from the main engine tank and simultaneocusly resupplied at the same rate. The
temperature of propellant extracted defines tank pressure decay rates and the
percentage of ligquid supplied in the mixing assembly. When the temperature of gas
being removed from the booster tank is high, a large quantity of liquid can be

used for a prescribed impulse demand. Thus, since the propellant is resupplied at
a rate equal to extraction rate, temperature of the gas being extracted also
defines passive heat exchanger flow rate and amount of tank wall cocling which will
oceur during burn. Current analyses assume that gas 1s extracted from a tank whose
contents are always at a homogeneous temperature. Additional studies, described

in Appendix B, indicate that thermal stratification and withdrawal of cool vapors

is desirable. Thus, the resupply vapors should be added to the main engine tank

Bed y
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without significant mixing. However, there are neither sufficient data nor valid
analytical techniques to establish with confidence the injection-mixing-extraction
characteristics within the main engine tank. To develop an understanding of pro-
cesses within the tank, a means of flow-mixing visualization is required. Scaling
laws which would allow simulation of these affects in an earth gravity environment
should be developed to provide this comprehension.

Heat Transfer Analysis - Basic APS flexibility is controlled by main engine

tank heat transfer characteristics. After a major APS operation, tank walls are
chilled and the tank is filled with relatively cool vapor. Radiative and conduc-
tive heat transfer from the vehicle structure govern assembly recovery time. Part
of the heat transferred to the tank goes into raising tank wall temperature, while
the remainder is given up to the vapor. The model used in this study is described
in Appendix B. Two features of this model are important to APS performance:

(1) it defines design of the heat exchanger, and (2) it defines thermal stratifi-
cation characteristics prior to the next major APS operation.

Regarding the first, the total heat absorbed by the tank/gas system is not
strongly effected by internal tank to gas heat transfer. However, if rates are
not known, the balance of heat addition will not be known and the design will have
to be overly conservative to accommodate uncertainties. Stated another way, the
heat exchanger will have to be over-sized for the lowest tank temperature, while
propellant supply and distribution will have to be over-sized for lowest gas
temperature and pressure in the tank. In the extreme case of near zero heat
transfer (gas highly stratified) this could result in a 400 1b increase in APS
weight.

In regard to thermal/stratification, it is necessary to consider the condition
of the gas that will be extracted during the next major APS operation. Under
conditions of low acceleration, thermal stratification will occur in the tank. In
general, this can be expected to result in a cool propellant core in the tank
center and warmer propellant next to the tank walls. Three dimensional effects,
and tank temperature variations, will, of course, effect these gradients (as will
control moments). The degree of stratification will also have a strong impact on
heat transfer characteristics. A means of simulating this phenomencn in an earth
environment is needed to guide heat transfer analysis and to establish initial

conditions for large propellant extractions.

8-5
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8.3 Liquid/Vapor Mixer Technology - As currently conceived, the liquid/vapor

mixer assembly consists of two independent controls: (1) pressure regulator, and
(2) liquid flow control. 1In addition, there is the injection/mixing chamber
itself. All of these are relatively simple in concept, but require technology
extensions for low pressure APS application.

The pressure regulator is fundamentally an iris (or camera shutter) design
with a motor drive to control aperture diameter. Devices such as this have been
used in other applications where response requirements were much lower. Designs
which will provide a long life and fast response must be developed.

The liquid flow control is a throttle wvalve, also motor driven, and its
response must be of the same order as that of the pressure regulator. Again, whil
no component is currently available, similar controls have been used and no signi-
ficant or long-lead development activity is considered essential.

Controls for both pressure regulator and throttle valve are similar. Each
will be driven to provide a preselected measurement and, for stability, valve
position rate damping will be provided by definition of the number of engines
firing. For the regulator, pressure transducers of sufficient accuracy can be
readily developed. TFor the liquid control, measurement of temperature is required
Alternate transducing methods (such as resistance thermometers or thermocouple
piles) should be investigated further, to define achievable accuracy and relia-
bility.

Preliminary analyses of the injector/mixer have shown that the 02 vapor/
liguid mixer is the more critical. This is true primarily because oxygen satura—
rion temperature is much closer to vapor temperature, and hence has a much lower
driving temperature for vaporization than hydrogen. Also, these preliminary
analyses have shown that very fine spray injection techniques will be required
to achieve reasonable mixing/vaporization lengths. The analyses have been per-
formed using techniques which, while valid at high gas/liquid temperature
differences, have not been verified at the low temperature differences of concern.
Therefeore, early testing of the oxygen mixer should be undertaken to ascertain
injector performance and mixing lengths, and to verify anmalytical techniques.

Subsequent to development of basic injector/mixer parametric performance
data, a breadboard assembly coupling regulator, throttle valve and controls should
be assembled and tested to confirm stability, establish response and accuracy, and

define assembly interface characteristics. This mockup should give particular
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attention to liquid supply line and assembly mounting to determine effect of wvapor
formation in the liquid line ahead of the injector.

8.4 Engine Technology - Engine assemblies for low pressure APS were one of

the most obvious concerns when the concept was initially identified. For this
reason, exploratory development programs on both engines and their propellant
valves were initiated by the NASA. To date these programs, and the work of several
propulsion companies, have shown that performance goals, cooling, and ignition can
be accomplished. Further test and design effort on the engines should stress
certain subsystem aspects that have been identified by APS conceptual definition
-studies. Specifically, these include:
(2) Minimum weight - due the low pressure under consideration and relatively

bhigh thrust levels, engines are large and constitute a significant

fraction of APS inert weight. Designs should stress light weight

materials and fabrication techniques for bimetallic construction.

(b) Low temperature propellants - Temperature of propellants acceptable for
engine operation 1s a key APS design constraint. Significant APS weight
savings can be realized by reducing propellant inlet temperature require-
ments. Based on current subsystem analyses, the limiting factor in this
is hydrogen and oxygen temperatures required to prevent 02 condensation
ahead of injectors. Preliminary analyses of this thermal interchange
have been performed, but have not been demonstrated. Low pressure engine
designs should, in the future, stress ability to operate steady-state
with propellant inlet temperatures as low as possible.

(c¢) Sensitivity of inlet conditions - Current APS design will closely control
propellant inlet conditions during any significant APS activity. Under
these conditions, vapor temperatures will be at their lowest walues and
pressure will be constant. However, during low usage contvol operations,
both temperature and pressure at the engine inlet will vary over wide
ranges. Since burn durations will be short, and performance is not
critical during these periods, no particular problem is anticipated.
However, engine design and cooling margins must be sufficiently flexible

to accommodate these inlet variations.
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9. SUBSYSTEM RELIABILITY

The APS has been designed to satisfy fail operational/fail safe requirements
as specified in the SSVDRD. The baseline shuttle low pressure APS, as described
in this report, retains a basic simplicity which will enhance the attainment of a
high level of operational reliability and safety. A reliability evaluation was
conducted to ensure that the subsystem contains sufficient redundancy to meet
this requirement, and to provide a numerical estimate of operatiomnal subsystem
reliability.

Three basic reliability tools employed in evaluating the low pressure AFPS
baseline design have included failure mode and effect analysis, functional flow
diagrams, and reliability estimates. These analyses are presented in Appendix C.
Component failure rates used in deriving reliability estimates are listed in

Figure 9-1 together with component duty cycles and failure modes considered.

Results of the reliability estimate are listed in Figure 9-2 for each func~—
tional group of components and for both orbiter and booster subsystems. Limiting
assumptions are included in the table. Results indicate that the orbiter APS
baseline operational reliability for a 72 hour earth-orbit mission will be 0.994
with fail-safe reliability exceeding 0.9999. The booster APS baseline shows an
operational reliability of approximately 0.999 and a fail-safe reliability greater
than 0.9999999.

Reliability estimates for both orbiter and booster APS subsystems are sensi-
tive to change in engine failure rate. This occurs because of the relatively high
number of firing cycles required of each engine, and from the fact that full tyiple
redundancy of engines 1s not provided. There is a degree of conservatism inm the
estimate for the engines, egpecially in the fail-safe calculations because it was
assumed that a failed open engine would be isolated and not used again. In
reality, an engine that is leaking propellant could be used to provide necessary

thrust in an emergency.
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SHYTTLE LOW PRESSURE AUXILIARY PROPULSION SUBSYSTEH
COMPONENT DUTY CYCLES FAILURE MODES AND FAILURE RATES

ORBITER AND BOOSTER

COPONENT SBENTIFICATION MISSION FAILURE FAILURE RATE SOURCE OF BASIC FAILURE
TYPE NUBERS DUTY £YELE HODE X 108 RATE
{SCHEMATIC)
LIDNID-VAPOR WIXER 33 CYCLES INJECTOR £LOGS HEELIGIBLE -
800 SECONDS
PP, CRYOBENIC, MOTOR CRYOPUMP #) 123 CYCLES INOPERATIVE 5 0/CYCLE + CYCLIC - ESTIMATE
DRIVER CRYOPUWP #2 900 SECONDS 50/HOUR HOURLY - PESCO PRODUCTS DATA
CRYOPUP §3 .
REGULATOR, PRESSURE, HELTUM -1, R=3, R-5, 72 H!)({RS FAILS OPEN I0/HOUR MDAC GEMINI EXPERIENCE
PR-1, PR-2, PR-3, (ORBITER '
PR-4, PR-5 .1 HOURS FAILS CLOSED T3/HOUR
(BOOSTER}
SEGULATOR, PRESSIRE, R-7, k-9 33 CYCLES FAILS IN LOW FLOM 50/HOUR BASIC FAILURE RATE ASSWED
MOTOR CRIVEW IRIS VALVE 800 SECONDS POSITION 25/CYCLE THE SAME AS FDR MOTOR DRIVER
THROTTLING VALVE
FAILS IN HIGH FLOW SR
POSITION 25/CYCLE
VALVE, CHECK Lily V-2, CV-4, CV-6, 123 CYCLES EACH FAILS OPEM 2.2/CYCLE AVCO RELIABILITY ENGINEERING
C¥-8, C¥-10, DATA SERIES, FAILURE RATES,
cv-12 FAILS CLOSED 0.1/CYCLE APRIL 1962
YALYE, $/0, PNEUMATIC V-1, ¥-2, V-3, V-4, 1 CYCLE EACH FAILS OPEN S10/CYCLE
ACTUATLON, NORMALLY v-10, ¥-12, v-18, FARADA - SATURN
CLOSED, FILL & DRAIN v-19, v-21 FAILS CLOSED 100/CYELE
VALVE, S/0, MDYOR DRIVEN, V-5, V.15, V-43, V-85, } CYCLE EAOH FAILS OPEN 16/CYCLE NASA DATA-SATURN
TSOLATION Y-47, v-49, PLUS ALL AS REQUIRED (SHUTOFF VALVE)
ENGINE [SOLATION FAILS CLOSED 3.CHE
YALVES
S [ S
YALVE, LIQUID THROTTLING -1, Te-3 33 CYCLES FAILS DPEN B0/HOUR + HOURLY - LTV ELECTROSYSTEMS DATA
HOTOR DRLYEN 800 SEC 40 CTOLE
FAILS CLOSED 20/HOUR + CYCLIC - STANFORD RESEARCH
10 CYeLE INSTITUTE CONTRACT
NAS 7-751
(ELECTROMECHANICAL ACTUATOR)
YALVE, SCLENOID ACTUATED, ¥-6, ¥-7, ¥-9, ¥-11, 1 CYCLE LACH FAILS OPEN 8.0/CVELE THIOKOL CHERICAL CORP.
HEL LU CONTROL =13, ¥-15, v-25, &5 RLQUIRED {SURVEYOR)
PY-1, PY-2, PV-3,
P-4 PY5, PV FAILS CLOSED 0.71CYCLE
PY-7, PY-8, PV-9
ENGINE PILOT sae AS
VALYES AND BACK-UP THRUSTERS
VALVES
VALYE, SOLENOLD ACTUATED, V=31, ¥-37, V-39, v-41 1 CYCLE ELACH FAILS OPEN 5.8/0VCLE NASA DATA - SATURN
LIQUID SHUTOFF AS REQUIRED
o i FAILS CLOSED 0.56/CYCLE
¥-29, ¥-13 123 LYCLES (W)
7 CYELES (0,5
¥-35, ¥-27 18 CYCLES -
REENTRY
VALYE, RELIEF, PRESSURE RY-1, R¥-2, AV-3, 1 CYCLE EACH FAILS OPEN 5.3/CYCLE NASA DATA - SATURN
PRY-1, PRV-2, PRY-3, AS REQUIRLD
PRV-4 FAILS CLOSED 1.5/CYCLE
(BURST DISK) AV-1, RV-2, RY-3, FALLS OPEN 60/W1T STANFORD RESEARCH INSTITUTE
PRY-1, PRY-2, PRY-3, CONTRACT NAS 7-751
PRY-4 FAILS CLOSED 40/WIT
TANK ASSERBLY, LIGUID L0, TANK 72 HOURS FAILS T0 MAINTAIN HEGLIGIBLE -
PROPELLART TEMPLRATURE CONTROL
LH, TANK
e o I [ S i
ENGINE ASSEMBLY ORBITER + X 28 CYCLES FAILS 70 FURICTION 5.0/CY0LE MDAC ESTIMATE-AFTER
g;Lth())OLED (INCLUDING - 9 CYCLES LACH DISCUSSION WITH ENGINE
LVE PITCH & ROLL 650 CYCLES MANUFACTURERS (AEROJET,
VAW 650 CYCLES ENGINE  FAILS OPEN OR LEAKS BELL. MARQUARDY, AND
BOOSTER e 7.5/CYCLE ROCKETDYNE)
PITCH & ROLL 100 CYCLES  EACH
Yasi 40 CYCLES  ENGINE
QUANTITY MELASURING PQ-1, PQ-2, PQ-1, 72 HOURS FAILS TO FUNCTION  2.5/HOUR AVCO RELIABILITY ENGIREERING
DEVICE PQ-4 (ORBITER) DATA SERIES, FAILURE RATES,
0.1 HOURS APRIL 1962
(BOOSTER)
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ORBITER BOGSTER

FUNCTIONAL GROUP OPERATIONAL FAIL SAFE OPERATIONAL FAIL SAFE
LO, STORAGE AND PRESSURIZATION 0.939930 0.99993997 - -
LH, STORAGE AND PRESSURIZATION 0.933997 0.99993999 - -
PROPELLANT CONDITIONING - O, 0.959994 0.39399939 - -
PROPELLANT CONDITIONING - Hy 0.999993 0.99999999 - -
PROPELLANT DISTRIBUTION AND ENGINES | 0.999743 0.99997069 0.999923 0.95959998
ENGINE PNEUMATIC CONTROL 0.999749 0.939999% 0.999991 0.95%99399

SUBSYSTEM 0.394118 0.59991134 0.999914 0.93999997
ASSUMPTIONS:
(1) COMPONENT EXTERNAL LEAKAGE CAN BE CONTROLLED BY PROPER SEAL DESIGN
(2) SENSING AND SWITCHING RELIABILITY IS EQUAL TO 1.0. X
(3) STRUCTURAL RELIABILITY IS EQUAL T0 1.0.
(4) MAIN PROPULSION SUBSYSTEM COMPONENTS USED BY THE AUXILIARY PROPULSION
SYSTEM WILL NOT DEGRADE APS OPERATION OR SAFETY.
(5) THE NON-OPERATING FAILURE RATE FOR APS COMPONENTS WILL NOT BE SIGNIFICANT
APS RELIABILITY
FIGURE 9-2
5-3
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10. SUMMARY AND CONCLUSIONS

Subtask B consisted of preliminary design of the APS concept selected during
Subtask A. The study concentrated on two primary areas, components and subassembly
designs, and subsystem performance and optimization. The first resulted in de-
finition of: the propellant storage subassembly, heat exchanger mounting, main
engine tank propellant acquisition, feed line sizing and routing, isolation valve
design and engine thrust level, number of engines and installation restrictiomns.
Feed line, isolation valve, and engine subassemblies were optimized to provide
minimum weight penalty. This optimization involved alternate engine locations and
number of engines, isclation valve concept selection, definition of line routing
and the number of isolation valves required, and sizing optimization to define
engine chamber pressure, and line and valve pressure losses. The second area of
concentration, involving performance definition and optimization, resulted in:
definition of heat exchanger and liquid/vapor mixer operating characteristics,
definition of main engine tank temperature and pressure histories, and identifica-
tion of subsystem performance and propellant requirements, including the effect
of main engine propellant residuals.

(a) Orbiter - Propellant storage gonsisted of insulation, acquisitiocn, stor=
age and pressurization subassemblies. fhe design selected used aluminized mylar
high performance insulation (protected by an outer fiberglass jacket) optimized
for minimum storage weights; a passive, surface tension acquisition concept con-
sisting of several screen covered channels arranged in layers: and an active hydro-
gen vent/cooling subsystem to intercept the incoming heat flux. Cold helium oxygen
pressurization was used, but hydrogen pressurization was best satisfied by using a
tank sump mounted boost pump with helium prepressurization to 40 1bf/inZa.

The tank mounted passive heat exchanger was attached to the tank ribs by rivet-
ing. The increased rib section modulus of this concept allowed a reducticn in
oxygen tank rib height, thus reducing heat exchanger weight penalty. Heat exchanger
design characteristics, as well as those of the liquid/vapor mixer, were defined
during performance evaluation.

Orbiter APS mission requirements were met with an engine arrangement utilizing

thirty-three 1080 1b thrust engines operating at a chamber pressure of 13.7 lbf/i32a°

MCDONNELL DOUGLAS ASTRONAUTICS COMPARNY =« EAST
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A dual mode of operation, using liquid/vapor mixing during major maneuvers
and simple blowdown during low usage demonstrably provides improved performance
and reduced technology requirements. Optimum APS/OMS velocity allocation was
defined, with the OMS providing the few (three to four) largest burmns, while the
APS provides the remaining functions. This allocation provides reduced weight
penalty without excessive OMS requirements in terms of number of starts and burn
duration. With this allocation, the APS was shown to provide high performance
throughout the missions.

The APS design as defined during this study provides high performance and
high reliability and satisfies all of the design objectives. Increased technology
requirements were identified only with main engine tank thermodynamics and pro-
pellant storage and acquisition. No significant problems are anticipated, but
additional analytical and test requirements have been identified.

(b)) Booster - The booster APS requires no separate propellant storage, since
propellant residuals, trapped in the main engine tanks following boost, are suffi-
cient to meet APS propellant demands. The booster APS operates in a simple blow-
down mode and no additional control is required. Booster APS missioﬁ requirements
were met with an engine arrangement utilizing twenty 2500 1b thrust engines op-

erating at a chamber pressure of 11 lbf/inza.

102

O IO ELL DDUUGLAS ASTRORMAUTICS COMPARY « EAST




OW PRESSURE APS REPORT MD(C E0302
UBTASK B 29 JANUARY 1971

I =

11. REFERENCES

a) Space Shuttle Vehicle Description and Requirements Document (NASA),

dated 1 October 1970.

b) Gaines, R.D., Goldford, A.I., Kaemming, T.A., High Pressure Auxiliary
Propulsion Subsystem Definition, Subtask B Report, McDonnell Douglas
Report No. MDC E0298, dated 12 February 1971.

-1

RMCDORNELL DOUGLAS ASTRORAUTICS COMPARY =« EAST




LOW PRESSURE APS REPORT MDC EG302
SUBTASK B 29 JANUARY 1971

APPENDIX A
THERMAL ENVIRONMENT DEFINITION

A~1., INTRODUCTION

APS performance depends strongly on thermal environment. Heat transfer to
main engine tanks determines rate of residual liquid boiloff, performance and
response characteristics of tank mounted heat exchangers, as well as main engine
tank temperature and pressure histories during the mission. The following para-
graphs describe the model used to evaluate main engine tank thermal enviromment.
The effect of this environment on APS performance in terms of propellant require-

ments and tank pressure fluctuations is described in Appendix B

The model used to calculate heat transfer to main engine tamk is shown in
Figure A-1. It consists of an external skin; a radiation gap; a layer of Micro~
Quartz; another radiation gap; the main engine tank wall; and, for the LHZ tank,
an internal layer of polyurethane foam insulation. To establish the thermal
environments for APS operating analysis transient ascent and on-orbit temperatures
were calculated, using appropriate ascent and orbital heating rates. Values shown
for skin, Micro-Quartz, and tank propertiesg corresponded to those obtained from

MDAC Phase B study for mid-tank locatioms.
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A-2, ORBITER ASCENT HEATING

Typical LH2 tank side and bottom temperature histories during ascent are shown
in Figure A-2, based on an initial tank wall temperature of 300°R. L02 tank
temperature histories are shown in Figure A-~3. Comparison of LO2 tank wall history
with LH2 tank wall history reveals the moderating effect of internal polyurethane
insulation installed within the LH2 tank. The LO2 tank incurs substantial heating
from heated pressurant gases, and begins to increase in temperature, whereas LHZ
tank temperature is almost constant after propellant uncovers the internal tank

wall.
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A~3. ORBITER ON-ORBIT HEATING

During orbit, difference in heat flux associated with different vehicle loca-
tions and orbital trajectories leads to substantial variations in vehicle internal
enviromment. As a simplification, the orbiter bottom is assumed always to face the
earth for these analyses and a range of sun-earth-vehicle angles as illustrated in
Figure A-4 was considered. Envelopes of orbiter component envirommental tempera-
tures are presented in Figure A-5 for high and low beta angle orbits. For the low
beta angle case, three regions have been defined, corresponding to the temperature
history expected (1) for the inner surface of the Micro-Quartz on the top of the
vehicle, where oscillations are most severe, (2) at the side, where the heat flux
is comparatively low, and (3) on the bottom, where thick Micro-Quartz and relatively
constant heat flux from the earth maintain a nearly constant inner surface tempera-
ture., Depending upon their location, components are exposed to either an almost
constant temperature (corresponding to side or bottom location) or temperature
oscillations (similar to those of the top).

For the high beta angle case, where a hot and cold vehicle side may be identi-
fied, the environmental range shown corresponds to that expected for the first ’
orbit as well as for steady-state conditions. The first orbit upper limit is the
temperature of the inner surface of the Micro-Quartz insulation on the hot side.

Calculations of temperature histories for the elements of the model shown in
Figure A~1 for the cold side, using only the cold side external heating rates,
predict temperatures which are unrealistically low. A better estimate of the cold
side environment has been obtained by assuming that the cold side is heated from
the hot side via a radiation shield, e.g., the internal keel web. The first orbit
lower limit environment temperature shown is the temperature of such an inter-
mediate shield, except for a short period just after insertion. During this time,
the vehicle is cooling from ascent heating and the inner surface of the cold side
Micro-Quartz is used for the environmental temperature. The composite cold side
curve should thus represent the nominal temperature level any component on that
side will experience.

The limits of the steady-state range are the Micro-Quartz inner surface
temperatures for a steady-state one dimensional calculation, using appropriate

external heat fluxes and permitting radiation from hot to cold side.

Ab
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Heat transfer characteristics associated with tank mounted heat exchangers
which are buried within the vehicle skin were evaluated.

typical results.

Figures A-6 and A~7 show
Figure A-6 illustrates the tank structural temperature alcong the
tube length at various times during a burn and shows the variance in temperature

experienced at the end of a burn. Using these initial conditioms, recovery temper-

atures were evaluated for representative heat fluxes. These results are shown in
Figure A-7. As shown the temperature recovery of tank mounted heat exchangers

does not appear to be a significant problem.

\

(X:x VEHICLE

FARTH |

SCHEMATIC OF SUN-EARTH-VEHICLE (BETA) ANGLE

FIGURE A-4

A-7
"
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A-4. ORBITER REENTRY HEATING

Orbiter reentry thermal histories are presented in Figure A-8 for the inner
insulation surface and for the tank wall at upper and lower side and at bottom
locations. The difference in thermal histories for the various locations is
occasioned by differences in local heating rates and variations in insulation time
constants. Reentry analysis demonstrates slow tank and inner insulation surface
cooling rate, even after reentry completion., This requires APS components to
withstand reentry thermal environment for a much longer time than reentry actually
takes. However, ﬁatural convection, not included in the analysis, would provide
more rapid cooling than that shown.

The increase in heat transfer rates to the main engine tank during reentry is
of a particular interest in considering methods of maintaining tank pressure during
APS usage. A conservative measure of this increase is provided by evaluating heat
flux from the insulation surface to the tank during reentry. A mean value, weigh-
ing bottom and side heating according to surface areas exposed, is given in Figure
A-9.

A1l
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A-5, BOOSTER ASCENT AND REENTRY HEATING

The ascent thermal environment experienced by the booster is similar to that
of the orbiter. However, the booster reentry heating is substantially less. The
booster internal thermal environment was based on the effective intermal environ-
mental temperature, which was determined by the radiation average of the skin and

tank temperatures. These estimates are shown in Figure A-10.

A4
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APPENDIX B
MAIN ENGINE TANK THERMODYNAMICS
B.1 INTRODUCTION

Main engine tamk thermodynamic processes are the most important congideration
in low pressure APS design. These processes have a direct bearing on the
ietermination of:
1) bropellant storage requirements, due to the potential utilization of

boost residual propellants
(2) propellant distribution network and controls design, due to the impact of

main engine tank design pressures on available subsystem pressure budget,

and
(3) heat exchanger design, due to the utilization of main engine tank heat

capacity for conditioning of resupply propellants.
A1l APS design and analyses were performed assuming the main engine tank vapor
mass was uniformly mixed. This permitted evaluation of main engine tank pressure
and temperature fluctuations with varying boundary conditioms, applying the classi-
cal equations for conservation of emergy and mass. It was recognized, however,
that because of large tank sizes and low on-orbit vehicle accelerations, complete
mixing of tank ullage vapor was unlikely. Therefore, additional studies were
undertaken to identify the potential impact of propellant vapor stratificaticn on
APS design and the characteristics of different propellant resupply concepts were
explored. This appendix provides a description of the analytical approach used for
evaluation of main engine tank thermodynamics. Heat transfer considerations,
including potential effects of external environmmental changes, and mass transfer,

including the rationale used to establish resupply and residual control methods,

are discussed. Additionally, the potential for and the effects of thermal str:
fication on APS operation and the general mixing characteristics of alternate
resupply/injection concepts are described. A brief description of the analyses
conducted to describe main engine tank thermodynamics, from the standpoint of both
complete and incomplete mixing, and a discussion of the general influences of main
engine tank thermodynamics on APS design are the subject of this appendix.

B.2 Main Engine Tank Thermodynamics (Complete Mixing) -~ The thermodynamic

state of propellant fluids within the main engine tanks is of fundamental importance
to the low pressure APS. 1In general, this is an open, unsteady system as shown by
the illustration of Figure B-1l. Pressure and temperature changes during a given

time interval are a function of initial fluid mass and thermodynamic state, and the

B--1
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difference between energy entering (i.e., resupply propellant flow and heating rate)
and energy leaving (i.e., total engine flow) the system. System temperature change
was calculated applying energy conservation, assuming a homogeneous propellant
vapor mass. Using this temperature change and the conservation of mass, system
pressure change was computed. Performing calculations in this manner, main engine
tank pressure and temperature profiles were determined during APS operation.

The boundary conditions associated with the main engine tank thermodynamic
system were categorized as: |

(1) heat transfer including heat transfer to the tank walls and from the walls

to the vépor, and
(2) mass transfer, including main engine tank resupply and engine flow,
- residual liquid propellant boil-off, and tank venting.

Definition of these boundary conditions and discussion of their impact on APS design
are provided in the following paragraphs.

B2.1 Heat Transfer - The general model employed for evaluating main engine

tank heat transfer rates is illustrated in Figure B-2. Heat is transferved from
the surrounding insulation (at temperature TO) to the tank wall and heat exchanger
tubing by radiation, and from the tank wall/tubing to heat exchanger fluids by
forced comvection. Heat is transferred between the tank wall and internal propel-
lant vapor by the mechanisms of natural convection and/or conduction. Natural
convection prevails when vehicle control accelerations cause the convective heat
transfer coefficient to be greater than the conductive coefficient. Conversely,
when vehicle control accelerations are very low, heat transfer between the tank
wall and propellant vapor is by comnduction, only. A parametric comparison of heat
transfer rates by convection and conduction is shown in Figure B-3 for the orbiter
main engine oxygen tank.

The heating rate mechanisms described above impact APS design by their effect
on main engine tank pressure and resupply propellant requirements. If tank-to-
vapor heating is reduced (i.e., by decreasing the surrounding environmental
temperature, TO) main engine tank pressure decreases during APS operation. Unless
engine feedline diameter is increased to compensate for the reduced pressure-budget,
engine flowrate (thrust level) will decay during critical events. An example of
this is shown in Figure B-4. Here the critical event occurs at approximately 26 hrs
into the mission. Two external temperatures are shown and the increased pressure
decay with reduced heating is pronounced. Vapor temperature in the tank is alsc

lowered and less liquid is utilized in the downstream liquid/vapor mixer.
B3
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Consequently, vapor resupply to the main engine tank increases (imset, Figure B-4).

Conversely, however, high tank-to-vapor heating rates result in significant venting

O
i

and consequently greater overall resupply propellant demands. The net effect
lower tank heating is a reduced total resupply propellant requirement due to a re-
duction in propellant vent losses for the total mission. This effect is iilustvated
in the example of Figure B-5.

B2.2 Mass Transfer - Propellant flow into and out of the main engine tank

vapor system has a direct bearing on propellant feed pressure and resuy;
lant demands. Propellant mass is transferred across the system boundary by engine
flow, resupply flow, residual liquid boil-off, and venting.

Resupply/Engine Propellant Flow -~ If engine propellant flow demands are high,

main engine tank pressures could decay to unacceptable levels for control of engine
thrust. To preclude this effect, energy is added to the main engine tanks in the
form of resupply propellant flow. The resupply propellant energy level is a
function of both mass flow rate and enthalpy (temperature). An example of how

these parameters affect main engine tank vapor pressure and temperature is shown in

o

Figure B-6. In this example resupply propellant temperature is plotted as
function of the ratio of resupply to engine flow rate. Shown are resupply condi~
tions required to: (1) maintain a constant tank wapor pressure; and (2) maintain
a constant tank vapor temperature. The curves for constant pressure and tempera-—
ture coincide at a resupply to engine flow ratio of unity and a resupply propellant
temperature equal to the initial tank vapor temperature. At higher resupply
temperatures, there is an increase in both vapor pressure and temperature. (on-
versely, at lower resupply temperatures, tank vapor pressures and temperatures
decrease. Studies presented in Reference (a) established that a resupply to engine
mass flow ratio of unity was optimum, since it minimized total propellant weight.
The remaining problem, then, was to establish resupply propellant temperatures for
the critical mission events to meet minimum required engine thrust levels.
result, in turn, established the required heat exchanger size (flow and surface
areas).

Two switching techniques were investigated for initiating resupply of rhe main
engine tanks:

(1) a simple pressure sensing technique; and

(2) a vapor mass sensing scheme.
In the first approach main engine tank pressure was allowed to decay during maneu-

. : . o ;2 .
ver burns or limit cycle operation until a pressure of 24 1b/in"a was attained. At
Be7
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this point resupply propellant flow was initiated in response to an electrical sig-
nal from a pressure switch. This supply flow was maintained until completion of
the event or until tank pressure was increased to 25 1b/inza. In the second
approach, main engine tank resupply was initiated in response to a prescribed ratio
of pressure and temperature. This was equivalent to initiating resupply after tank
vapor mass had decayed to a prescribed value. A pressure/temperature ratio of
L0565 (30 lbfinza tank vent pressure/530°R tank external environment temperature)
was employed. Unlike the first approach, which was based on resupply only during
APS usage, main engine tank resupply was allowed during idle periods as well as
during maneuver burns and limit cycle periods. Comparison of mission pressure and
resupply propellant histories for the two switching approaches is shown in Figure
B-7. As seen from this comparison, total propellant resupply requirements were
reduced by 187 1bs using the P/T switching technique. Because of this propellant
weight savings, the P/T switching technique was selected for initiation of main
engine tank resupply.

Residual Liguid Boil-off and Venting - At the time of orbiter main engine

shutdown, there are significant quantities of oxygen and hydrogen liquid residuals
remaining in the orbiter and booster main engine tanks. These residual propellants
are assessed entirvely against the main propulsion subsystem, and, if a portion of
these propellants can be utilized by the APS to satisfy impulse requirements, APS
weight can be reduced. Determination of the amount of residuals that can be
credited to the APS requires an analysis coupling the effects of heat transfer into
the main engine tanks, residual liquid vaporization, and APS usage. The greatest
uncertainty in this analysis is the heat transfer and vaporization rates associated
with tank residual liquids. A model, developed to predict residual liquid heating
and corresponding vaporization rates is discussed in Appendix C of Reference (a).
Corrections to this model were made during Subtask B studies to account for flash
boiling which occurs whenever the ullage pressure drops below the residual liquid
gaturation pressure. In ordef to account for this effect, the model illustrated in
the H-S diagram of Figure B-8 was employed. As shown, saturated liquid is assumed
at point (1). As tank pressure decays to point (2) the residual fluid quality is
increased from zero to a value, x. The new quality is readily calculated from a
knowledge of saturated entropies at pressures corresponding to points (1) and (2).
Saturated vapor then flashes off the residual fluid and mixes with the warmer
ullage vapor, returning the liquid to a saturated state at point (3). Simulated

APS mission duty cycles were conducted for both the booster and orbiter using this
B-10

WY IR NELL DOUGLAS ASTRONAUTICS CORMPARY « EAST




REPORT MDC E0302

LOW PRESSURE APS

SUBTASK B

29 JANUARY 1971

08

(FOVIINYI CHININLEY W00 =NON )
SLOFALT STVNCISEI HNICNTONI

SIATONOD TOSINOD MINSSMId 40 NOSTHVJINOD
YH “IWIL NOISSIH

02 09 0§ oY ot 04 o1

N ISVRUGRNIRION SN EDNUDN SN GENDEPE SRy I RS
e I

TH00d

LI THA
DAN VY

Fradnsiy (d) |Tanssydad

F1ddnsay| (I/d) | unL v iR WL/ TNS STy d

Y
\

.

\\.‘ \\
. \ I \\H\\\\\ \

A
- _ )
. T _ -} i \.v\

Froan
i
faial
[13]
[ 4
d
9
™
0
g
0002 mm
Wm_ H
=
Qoo =
i
0009 © K
0008
T

o\
OILLvy
HINLXTH

q
0T
(@]
s
ST m
Fy
ke
o
¥4 m
0¢

MCDORRNELL DOUGILAS ASTRORAUTICS COMPARY « EAST

NOTISSTH SNOAZHANTY "IIEY0 HILT s




REPORT MDC E0302
29 JANUARY 1971

LOW PRESSURE APS

SUBTASK B

THAOW HNITIOE HSVIA NOIT

a@ndrIT HINLXTW dIOTd arndI1
HLYENLYS HSVHd-OML QLLVENLYS

e,

X4vVaNnod
WHLSAS

AdOYINE

SENIT TUNSSHYd INVISNOD A

ALTVHING

FIGURE B-8

B-12

AMCDORNELL DDUGLAS ASTRORAUTICS COMPARY = EAST



LLOW PRESSURE APS REPORT MDC E0302
SUBTASK B L 29 JANUARY 1971

flash-boiling model and the results are shown in Figure B-9 and B~10, respectively.
Most importantly, it is seen that total booster impulse requirements can be satis—
fied entirely using residual propellants contained in the main engine tanks follow-
ing boost. For the orbiter, however, only 19 percent of residual liquids could be
utilized by the APS for the main engine tank configuration specified in the Space
Shuttle Vehicle Description and Requirements Document (SSVDRD). This relatively
poor residual liquid utilization resulted from high vaporization rates which caused
most of the liquid boil-off to be vented before major vehicle velocity changes were
performed.

Since liquid oxygen constituted the greatest residual mass, alternate schemes
were considered for obtaining better utilization of oxygen residuals. The preferred
approach is illustrated in Figure B-11l., It employs a separate compartment between
bulkheads in the main engine oxygen tanks. Liquid oxygen residuals would be trapped
in this compartment following boost. Subsequent envirommental heating of the
residual oxygen causes a more rapid pressure rise in the compartmented tank than
main engine tank due to the larger ratios of wetted tank area-to-propellant mass.
When a pressure differential of 4 lb/in2 (maximum bulkhead pressure differential)
is attained, a relief valve between the main oxygen and compartmented tank opens
and allows flow between the tanks until the pressures equalize. In this manner,
passive control is exercised over liquid oxygen boil-off, and as a result greater
utilization of residual oxygen is achieved. This is illustrated by the example of
Figure B-12, which compares mission main engine and compartmented tank pressure
profiles and tabulates residual liquid oxygen utilization. As seen, an additional
1064 1bs of residual oxygen is used by the APS. Based on this substantial weight
advantage, the compartmented 02 tank was selected as a baseline design for the
orbiter APS.

B-3 Non-Homogeneous Heating/Mixing ~ Investigations were conducted to deter-

mine the potential deviation in main engine tank temperature from a homogenecus
model during orbiter mission phases, and to determine corresponding effects on APS
design. Studies of orbiter mission phases determined that substantial wvapor
stratification can occur in the main engine tanks and that the type and location of
main tank injection/extraction ports can have a significant effect on tank pressure
variation and APS propellant requirements. These effects are discussed in the
following paragraphs.

Propellant Vapor Stratification - The potential for main engine tank propellant

vapor stratification was evaluated using the model shown in Figure B-13. The

MCDORRNELL DOUGLAS ASTRORMNAUTICS COMPARY =« EAST
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micro-quartz insulation thickness is typical of a location on the side of the
orbiter and the heat flux was selected to provide an equilibrium radiation tempera-
ture of 500°R. The gas model consists of 11 radial nodes with an initial uniform
density corresponding to a pressure of 18.5 psia and a specified temperature. Step
temperature changes between the tank wall and vapors were assumed, typifying the
non~equilibrium conditions which can exist following an APS maneuver.

Temperature profiles from these analyses are shown in Figure B-14 for the
hydrogen and oxygen tanks, respectively. Substantial heating of the vapor near the
wall occurs almost immediately due to the internmal energy (mass and heat capacity)
of the tank wall. The oxygen vapor temperature gradients are substantially larger
and decay more slowly than the hydrogen. This is caused by the low oxygen thermal
conductivity. With increasing time, temperatures and pressures asympotically
approach equilibrium values. These results do not account for local heat sources,
ginks nor natural convection established during the burn but are believed to be
fairly representative of the non-uniform conditions to which the APS must operate.

Utilizing these results, a study was performed to evaluate the effect of
extracted vapor temperature on APS performance. Three options were evaluated for
an envirommental temperature of 530°R and an initial bulk vapor temperature of
516°R. The selected options were:

(a) constant low temperature vapor extraction at 350°R

{(b) extraction from homogeneous mixture (Baseline case)

{¢) constant high temperature vapor extraction at 550°R
Main engine tank pressure profiles for each option are presented in Figure B-15 for
the critical pre~docking maneuvers. As shown, tank pressure variation is minimized
when cool vapors are extracted (due to the low specific volume of the extracted
vapors). However, this results in higher total mass flow through the heat exchan-
gers and main engine tank assemblies. Although the extraction temperature must
eventually equilibrate to the bulk mass temperature, the data of Figure B-15,
demonstrates the desirability of extracting cool vapors to maintain high tank
preszssure levels and a potential for improved APS design.

During major maneuver burns and reentry, the temperature profiles shown in
Figure B~14 are reoriented from a radial to a longitudinal distribution due to
natural convection under imposed g loads. To invéstigate this phenomenon, a simple
physical medel was employed to simulate tank vapor conditions. The tank vapor was
assumed to be an infinite gaseous medium initially at rest. The radial tank

temperature distribution was approximated by a step temperature change at the tank

B-18
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centerline corresponding to the total temperature drop across the tank. Applying
the analysis of Reference B, non-dimensional velocity profiles were developed for
suddenly accelerated vapor. This is shown in Figure B-16. These profiles show the
existence of a convective boundary layer adjacent to the tank centerline during a
braking maneuver (velocity imparted from top to bottom in schematic illustration).
The warm vapors to the right of center move down whereas vapors to the left of cen-
ter move up. Vapor velocity at time, t, after start of the maneuver, is given by

U = gBot (symbols defined in Figure B-16). Applying this equation to a reasonable
range of maneuver acceleration levels, the following approximate vapor velocities

were computed:

vehicle acceleration, ft/sec2 vapor bulk velocity, fit/sec
0.1 . 0.01(t)
1.0 0.1(t)

Results are equally valid for oxygen and hydrogen. Using a velocity threshold
of 3 ft/sec as that required for significant redistribution of vapors, tank-vapor
heating is primarily by conduction during the first 30 ft/sec of an APS maneuver;
thereafter, vapor heating/mixing is convective in nature. In the example shown,
the cooler vapors migrate to the top of the tank and warmer vapors collect near the
bottom, thus producing an axial temperature distribution in the direction of the
acceleration vector. Cool propellant vapor can then be extracted from the top of
the tank to maintain tank pressure.

Resupply Propellant Injection — The above examples for orbiter idle and maneu-

ver periods demonstrate the importance of vapor mixing processes. This mixing will
be strongly affected by the method chosen for injection of resupply propelliant.

Alternate resupply injection techniques are shown schematically in Figure B~17.

The large arrows indicate the general flow direction while the small arrows on the
closed curves illustrate the various secondary flow patterns which would be gstab-
lished for the different schemes. The tank centerline injection scheme offers the

simplicity of single port injection and provides minimal thermal communication
between the wall and the injected fluid but, if the injected fluid is coclder than
the tank temperature, this relative isclation is a disadvantage since the thermal
energy of the tank wall can not be utilized directly.

The wall injection mode provides a better»means of utilizing heat transfer
from the wall to the injected flow. Heat transfer from the wall to the resupply
flow supplements the heat exchanger and thus aides in maintaining tank pressure

during a burn. The difficulty with both center and wall injection modes is that
B2t
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they produce significant mixing, thus precluding preferential extraction of cold
Vapors.

The centrifugal and radial injection modes offer better containment of resup~
ply fluid in the injection near-field, thus establishing and/or maintaining vapor
stratification. Radial injection minimizes initial wall contact, but introduces
substantial secondary mixing.

The centrifugal injection technique combines the advantage of the wall injec~
tion mode with near-field mixing. In this manner wall-to-fluid heat transfer is

used to supplement the heat exchanger, and propellant stratification is maintained

-y

for selective vapor extraction. Experimental data and analytical models for
circumferential wall jets provide means for estimating required lengths and heat
fer processes. Because of these benefits, the centrifugal injection method

is preferred.

B-24
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APPENDIX C
C-1. RELIABILITY

Analyses were conducted to ensure that the APS could with a miniwmum of com-
plexity satisfy fail operational/fail safe requirements of Reference a, and to
verify that the basic APS design achieved high reliability. Failvopar&tiﬁnalffail
safe capability evaluation was performed with functional flow diagrams and pre-~
liminary failure mode and effects analyses. These studies defined amount and type
of component and subassembly redundancy required, and also constituted the basis
for development of Subtask B APS schematics and weights. Component and subassembly
failure rates, based on representative, available, failure rate data, were then
used to estimate APS reliability. These studies have shown that the low pressure
APS design provides a basic simplicity offering potentially high reliability for
both booster and orbiter applications.

The general philosophy for implementing fail operational/fail safe redundancy for
the Low Pressure APS was to minimize the number of components in order to save
weight while maintaining full fail operational/fail safe capability. Three parallel

redundant regulators control LO, tank pressure. The valve module controlling flow

through the propellant heat exciaugers provides three parallel flow paths as well
as series shutoff valves to control leakage. Because the Low Pressure APS can
provide limit cycle operation in a simple blowdown mode without liquid vapor
mixing, only double redundancy was necessary for liquid vapor mixing and engine
propellant pressure regulation. The number of engines necessary to provide
nominal impulse requirements allowed isolation of engines by groups after the
first failure in some instances. In other areas, individual isolation for each
engine is provided after first failure. A second level of isolation valves provide
back-up for a double failure of an engine valve and a first level lsclation valve.
To provide a basis for reliability analyses, the following criteria were
established:
(1) structures, (such as lines, tanks, fittings and static seals) are
assumed failure free.
(2) engines will not fail in a catastrophic mode as long as propellants
are supplied at acceptable pressures and mixture ratio.
(3) normally closed shutoff valve will not fail open prior to first flight

operational cycle, and leakage before first operation will be of a

magnitude which will not degrade system operation.

AICDONNELL DOUGLAS ASTROMAUTICS COMPARY = EAST
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(4) normally open shutoff valve will not fail closed prior to first flight
operational cycle.

(5) liquid propellant storage tanks will not normally need venting other
than that required to satisfy thermodynamic venting requirement.

(6) component external leakage can be virtually eliminated by special
attention to component design details; redundancy for this failure

mode was not considered in this study.

Ce2
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C-2. FAILURE MODE ANALYSES

Analyses were conducted to identify potential component and subassembly
failure modes, their effects, and required redundancy. Detailed evaluaticn of

2ach component and subassembly was made, but no attempt was made to define degrees
of failures. For example, control valves were considered to have two failure modes:
fail open and fail closed. Here, fail open included everything from a failure in
“he full open position to the lowest leakage rate affecting subsystem coperation

and safety.

Results of this study - the Failure Mode and Effects Analyses - are shown in
Figure C-1. Each primary component, which is normally used before a failure, is
identified, and potential failure modes, failure effects, failure detection requive-
nments, and redundancy considerations are presented. No attempt was made tc design
an instrumentation system or to define depth of redundancy required for parameter

sensing devices. Components and subassemblies are shown schematically in Figure

C~2, along with a flow diagram illustrating operational mode (zero and one failure)
and safe mode (two failures). Minimizing number of components and simplifying APS
design were considered important goals. For example, engine isolation valves were
not placed on each engine; rather, they serve specific engine groupings so that
fail operational/fail safe conditions are met. Likewise, safe requirements (entry
attitude control) are satisfied by simple blowdown operation, without liquid/vapor
mixing, and only two regulators and liquid/vapcr mixers are required. Number of
components and redundancy requirements resulting from this analysis were then

utilized in subsystem sizing and weight evaluations.
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C-3. RELIABILITY ESTIMATES

A measure of potential APS "numerical" reliability was derived. Reliability
estimates were, in general, determined by applying component failure rates and
duty cycles listed in Figure C-3 to subsystem functional flow diagrams {presented
above). In some instances, appfoximation techniques were used teo compute the
estimate for redundant and complex component groups. The most common approximation

used was a calculation of "Fail Safe' probability as:

P(FS) =1 - E P (of each combination of failures occuring

which create a potential hazard.)

In view of the preliminary nature of component and subsystem design, accuracy of
these approximations is well within the failure rate accuracy used in the analyses.
Failure rates, as listed in Figure C-3, were selected after a review of available
failure rate data. Percentage of failure rate assigned to each component failure
mode is a judgment figure based on review of failure data (where available). Duty
cycles shown for each component cover a 72 hour mission time line. Environmental
and operational factors were not applied to these duty cycles because components
are generally designed for much more severe environments that those encountered
in actual usage.

The results of these estimates, presented in Figure C-4, indicate that the
low pressure APS baseline designs described in this report offer high potential

reliability.
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SHUTTLE LOW PRESSURE AUXILIARY PROPULSION SUBSYSTEM
COMPONENT DUTY CYCLES FAILURE MODES AND FAILURE RATES

ORBITER AND BOOSTER

COMPONENT IDENTIFICATION MISSION FAILURE FAILURE RATE SOURCE OF BASIC FAILURE
TYPE NUMBERS DUTY CYCLE MODE X 106 RATE
(SCHEMATIC)
L1QUID-VAPOR MIXER 33 CYCLES INJECTOR CLOGS NEGLIGIBLE e
800 SECONDS
PUMP, CRYOGENIC, MOTOR CRYOPLMP #1 123 CYCLES INOPERATIVE 5.0/CYCLE + CYCLIC - ESTIMATE
DRIVEN CRYOPUMP #2 500 SECONDS 50/HOUR HOURLY - PESCO PRODUCTS DATA
CRYOPUMP #3
REGULATOR, PRESSURE, HELIUM R-1, R-3, R-5, 72 HU%RS FAILS OPEN 30/HOUR MDAC GEMINI EXPERJENCE
PR-1, PR-2, PR-3, (ORBITER
PR-4, PR-5 0.1 HOURS FAILS CLOSED 11/HOUR
(BOOSTER)
REGULATOR, PRESSURE, R-7, R-9 33 CYLLES FAILS IN LOW FLOW 50/HOUR BASIC FAILURE RATE ASSUMED
MOTOR DRIVEN IRIS VALVE 800 SECONDS POSITION 25/CYCLE THE SAME AS FOR MOTOR DRIVFN
THROTTLING VALVE
FAILS IN HIGH FLOW 50/HOUR
POSITION 25/CYCLE
YALVE, CHECK LH, V-2, CV-4, CV-6, 123 CYCLES EACH  FAILS OPEN 2.2/CYCLE AVCQ RELIABILITY ENGINEERING
Cv-8, C¥-10, CATA SEOTES, FAILURE RATES,
cv-12 FAILS CLOSED 0.1/CYCLE APRIL 1962
YALVE, $/0, PNEUMATIC V-1, ¥-2, V-3, V-4, 1 CYCLE EACH FAILS OPEN 510/CYCLE
ACTUATLON, NORMALLY v-10, V-12, V-14, FARADA - SATURN
CLOSED, FILL & DRAIN v-19, V-1 FAILS CLUSED 100/CYCLE
VALVE, 5/0, MOTOR ORIVEN, V-5, V.15, V-43, V-85, 1 LrCib [ACH FALLY OPEN 16:CYCLE NASA DATA-SATURN
{SOLATION v-47, v-49, PLUS ALL AS KEQUIFELD (SHUTOFF VALVE)
ENGINE ISOLATION FAILS CLOSED 3,3/CY0LE
VALVES
VALVE, L1QUID THROTTLING V-1, TV-3 33 CYCLES FAILS OPEN 80/HOUR * HOURLY - LTV ELECTROSYSTEMS DATA
MOTOR DRIVEN 800 SEC 40 CYCLE
FAILS CLOSED 20/H0UR + CYCLIC - STANFORD RESEARCH
10 CYCLE INSTITUTE CONTRACT
NAS 7-751
{ELECTROME CHANTCAL ACTUATOR)
WALVE, SOLEHOID ACTUATED, V-6, V-7, ¥-9, v-11, 1 CYCLE EACH FAILS OPEN 8.0/CYCLE THIOKOL CHEMICAL CORP.
HEL1UM CONTROL v-13, v-15, v-25, AS REQUIRED (SURVEYOR}
PV-1, PV-2, PV-3,
Y4 PYL5. Pk FAILS CLOSED 0.77/CYCLE
PY-7, PV-8, PV-9
ENGINE PILOT SAME AS
VALVES AND BACK-UP THRUSTERS
VALVES
VALYVE, SOLENOID ACTUATED, v-31, V-37, V-39, ¥-41 1 CYCLE EACH FAILS OPEN 5.8/CYCLE NASA DATA - SATURN
LLQUID SHUTOFF AS REQUIRED
- FAILS CLOSED 0.56/CYCLE
v-29, V-33 123 CYCLES (H,)
87 CYCLES (O0p
v-35, v-27 18 CYCLES -
REENTRY
VALVE, RELIEF, PRESSURE RV-1, RV-2, RV-3, 1 CYCLE EACH FAILS OPEN 5.3/CYCLE NASA DATA - SATURN
PRV-1, PRV-2, PRV-3, AS REQUIRED
PRV-4 FAILS CLOSED 1.5/CYCLE
(BURST DISK) RY-1, RV-2, RY-3, FAILS OPEN 60/UN1T STARFORD RESEARCH INSTITUTE
PRV-1, PRV-2, PRV-3, CONTRACT NAS 7-75)
PRV-4 FAILS CLOSED 40/WMN1T
TANK ASSEMBLY, LIGUID LO, TAHK 72 HOURS FAILS TO MAINTAIN NEGLIGIBLE
PROPELLANY TEMPERATURE CONTROL
LH, TANK
ENGINE ASSEMBLY ORBITER + X 24 CYCLES FAILS TO FuncTION 5,0/CYCLE MDAC ESTIMATE-AFTER
FILM COOLED (INCLUDING - X 9 CYCLES EACH DISCUSSION VIT?A§285?$
YALVES) PITCH & ROLL 650 CYCLES MANUFACTURERS .
¥ 650 CvcLEs ~ENGINE  FAILS OPEN OR LEAKS BELL, MARQ[)J/\RDT, AND
s 7.5/CY ROCKETDYNE
BOOSTER /EYOLE
PITCH & ROLL 100 CYCLES — EACH
YAR 40 CYCLES  ENGINE
GUANTITY MEASURING PQ-1, PQ-2, PQ-3, 72 HOURS FAILS TO FUNCTION 2.5/HOUR AVCO RELIABILITY ENGINEERING
DEVICE PQ-4 (ORBITER) DATA SERIES, FAILURE RATES,
0.1 HOURS APRIL 1962
(BOOSTER)

C-20
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ORBITER BOOSTER
FUNCTIONAL GROUP OPERATIONAL FAIL SAFE OPERATIONAL FAIL SAFE
LO, STORAGE AND PRESSURIZATION 0.999390 0.95939997 - -
LH, STORAGE AND PRESSURIZATION 0.993997 0.99999999 - -
PROPELLANT CONDITIONING - 0, 0.9939%4 0.99999939 - -
PROPELLANT CONDITIONING - H, 0.939993 0.39999999 - -
PROPELLANT DISTRIBUTION AND ENGINES | 0.999743 0.99997069 0.999923 £.93999336
ENGINE PNEUMATIC CONTROL 0.999749 0.9999999 0.939991 0999959598
SUBSYSTEM 0.99719% 0.99997059 0.999914 £.99999957
ASSUMPTIONS:
(1) COMPONENT EXTERNAL LEAKAGE CAN BE CONTROLLED BY PROPER SEAL DESIGN
(2) SENSING AND SWITCHING RELIABILITY 1S EQUAL 70 1.0.
(3) STRUCTURAL RELIABILITY IS EQUAL TO 1.0.
(4) MAIN PROPULSION SUBSYSTEM COMPONENTS USED BY THE AUXILIARY PROPULSION
SYSTEM WILL NOT DEGRADE APS OPERATION OR SAFETY.
(5) THE NON-OPERATING FAILURE RATE FOR APS COMPONENTS WILL NOT BE SIGNIFICANT
‘APS RELIABILITY
FIGURE C-4
Cm2
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D-1. ©PROPELLANT STORAGE, ACQUISITION, AND PRESSURIZATION

During Subtask A, analyses and trade studies were conducted to identify pre-
liminary propellant storage assembly selections. It was concluded that separate
APS tankage was more attractive than integrated APS/OMS tankage. Also, a simple,
regulated pressure, helium pressurization assembly was judged better for oxygen
tanks and an autogenous pressurization assembly, using a compressor, was more
attractive for hydrogen tankage. Component models used to conduct Subtask 4
analyses were not sophisticated, and (especially in the case of the positioning and
vent assemblies) design details were not important since these would have little
effect on subsystem weight or technology effecting selection of preferred approaches.
Therefore, during Subtask B, it was necessary to conduct the detailed analyses
required to define more accurately design and performance of propellant tankage
assemblies and to confirm and/or update the propellant integration approach
selected in Subtask A.

For these analyses, baseline tank sizes were established, based on Subtask A
requirements, alternate design approaches for different tankage assemblies were
investigated, preferred approachs were selected, and design and performence charac-
teristics were established. This appendix defines baseline requirements used for
Subtask B analyses and summarizes trade studies effecting definition of assembly
design for propellant acquisition, insulation, cooling, and pressurization. In
addition, this appendix defines results of an updated integration study and
provides a summary of selected low pressure APS tankage design.

D-1.1 Baseline Requirements - Significant APS tankage requirements affecting

preliminary design are shown in Figure D-1. These requirements were based princi-
pally on Subtask A results, defined in Reference (a). Spherical tanks with dia-
meters of 10.6 £t for hydrogen and 504 ft for oxygen were required for AFPS propellant
storage. OMS tank requirements are also shown. These were based on use of an
RL10A-3-3A engine in the OMS subsystem and OMS maneuver velocity allocation of

1150 ft/sec. Analysis of the various tankage assemblies based on these require-
ments, review of the assembly options, definition of concepts selected, and

definition of their operating characteristics is provided below.
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PROPELLANT WEIGHT - LB HYDROGEN OXYGEN
APS 2499 4496
OMS 3775 18,943
TOTAL APS PLUS OMS 6274 23439
APS TANKAGE CHARACTERISTICS
NO TANKS 1 1
TANK SHAPE SPHERICAL SPHERICAL
VOLUNE - FT3 634 67
DIAMETER - FT 10.6 504

APS TANKAGE REQUIREMENTS
FIGURE D-1

D-2. PROPELLANT ACQUISITION ASSEMBLY

A propellant positioning device is required in the APS tankage to ensure liquid
outflow during low g orbital phases of the mission. During these phases, vehicle
accelerations tend to randomly orient bulk propellant mass within the tank with the
potential of uncovering the tank ocutlet and causing a loss of pressurant gas and
interruption of liquid flow. Some device is required to either totally constrain
the liquid at the tank outlet or to provide a path of communication from liquid
mass to tank outlet. Total constraint by positive expulsion was impractical
because of tank size, number of cycles required for reuse, and the cryogenic
properties of the propellant. The oniy reasonable approach available was to use a
surface tension screen device to provide a flow path to the tank outlet.

Surface tension devices had been successfully used on several vehicles, includ-
ing Agena, Apollo, Transtage, and drone and target aircraft. Also, these devices
had been subject to extensive laboratorv testing. They are passive in nature, and
have no moving parts, resulting in high reliability and multicycle reuse capability.
Sufficient design information was available to establish, with high confidence,
that a2 surface tension assembly could be designed for orbiter application.

Basic physical processes associated with surface tension concepts are shown
in Figure D-2. Under normal operation, the screen is completely wetted on one side.
If gas contacts the screen on the other side, surface temsion forces prevent move-
ment of the vapor through the screen. When liquid is in contact on the other side.
liquid is free to travel from one side to the other as the surface tension effect

is not present. Thus, successful acquisition of the liquids will be achieved

D--2
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until: (a) there is no liquid/liquid interface; (b) acceleration forces of suffi-

cient magnitude to exceed surface tension pressure capability are present; or
(c) heating below the screen causes vaporization on the liquid side, hence a gas/
gas interface across the screen. TIn this last case, the surface tension screen

would preferentially flow pressurant gas.

D-2.1 Acquisition Concepts and Selection — Three basic options for acquisi-

tion assembly designs are available. These are illustrated schematically in
Figure D-3. The first acquisition device consists of a screen configured to
locate the screen surface close te the tank wall (i.e., a wall-oriented screen).
With this approach, liquid withdrawal is possible as long as liquid is in contact

with the tank wall. This approach is, therefore, mission-independent, since the
specified liquids are wetting and will always assume a wall-contact orientation.

Pressurant Breakthrough

OUTFLOW
Heating Below Screen

SURFACE TENSION DEVICE OPERATION

FIGURE D-2
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Screen Wall Pickup Start Basket

1. MUST BE LAUNCHED FULL 1. PARTIAL FULL LAUNCH POSS'BLE 1. PARTIAL FULL LAUNCH POSSIBLE
2. MISSION-INDEPENDENT. NO 2. T®O TANK OUTLETS REQUIRED 2. SINGLE TANK OUT

SETTLING REQUIRED 3. MISSION-DEPENDENT. SETTLING 3. BASKET SIZED TO PROVIDE LIQUID
3. SINGLE TANK OUTLET REQUIRED WHEN LIQUID IS IN . X END OF
4. LARGE SIZE REQUIRES FINE 4. LIQUID "FALLOUT" DURING OUT- TANK

SCREEN MESH FLOW IN LATERAL ACCELERATION 4. SOME SETTLING STILL REQUIRED
5. LOW-G TRANSFER CAPABILITY 5. NO “FALLOUT" DURING LATERAL
ACCELERATION

ACQUISITION DEVICE CANDIDATES FIGURE D-3

The second device is a start basket. This approach is mission-dependent,
because it must be refilled by translation accelerations periodically during the
miszion. It also requires two tank outlets since the large OMS thrust level will
settle propellant in the -X end of the tank (refilling the basket) while entry
accelerations will settle the propellant in the -Z portion of the tank.

The third acquisition candidate is a hybrid assembly, combining the start
basket with a wall-oriented approach. Only a single tank outlet is needed, but
the device is still mission-dependent since the basket must be refilled periodically.
The wall oriented device was selected because it is mission-independent, does not
regquire two outlets, and needs no refill.

Several alternates could be conceived for a wall oriented positioning approach.
The most conventional of these is a continuous tank liner made of screen. This
approach has received the most attention in exploratory development testing, but
was considered to be impractical for a large tank because of fabrication difficulty
and boost ullage considerations (Reference (b)). An alternate, and more practical,
configuration is a screen channel device, illustrated in Figures D-4 and D-5.
Several aluminum channels or annular trays are located within the propellant tank
in close proximity to the wall. These assure contact between liquid and positioning

device under any random orientation conditions. The device is insensitive to boost

Dwd
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accelerations, since trays are submerged during boost, and it is the most practical
design approach from fabrication and screen size standpoints. In addition, the
design readily provides capability of checking screen bubble point pressure after
complete tank assembly.

D-2.2 Design - The propellant acquisition device consists of three screen
channels, or trays, around the circumference of the propellant tank and a single,
enclosed collector channel which connects each annular tray to the sump (Reference
Figures D-4 and D-5). The annular trays are normal to the vehicle longitudinal
(or +X) axis and the sump is located in the tank bottom (or the -Z) extremity of

. the tank. The tank outlet has a cone-shaped vapor/liquid interface screen located
within the feed line below the sump. The feed line is connected to the propellant
tank by a small vapor relief line, allowing any vapor developed in the line to
pass back into the tank vapor region. Solid portions of the trays are formed from
0.02 in. aluminum sheet. The center wall in the channel is present to increase box
cross section rigidity. It is anticipated that channels would be fabricated in
quarter sections, inspected, and then joined together inside the tank. Each
quarter section has two points of attachment to the tank wall. At these points,
then, low conductivity fiberglass rods would offer channel support.

D-2.3 Operation - It is a requirement that screen surfaces must contact the
bulk liquid throughout the mission and that channels remain completely full of
liquid at all times. During outflow, the acquisition device will selectively pass
liquid to the feed system if it is in contact with a liquid mass. The wall-
oriented nature of the screen device ensures that contact will be made. Screen
mesh and flow passage dimensions are selected so that pressure drop across screen
vapor/liquid interface never exceeds screen bubble point prior to reentry. Two
different mesh sizes have been selected for the screen channels. A relatively
coarse mesh can be used in the screen channel near the aft end of the vehicle.

The other two channels require a finer mesh, to withstand hydrostatic head during
periods of high maneuver accelerations and low propellant loading.

Placement of the screen channel rings within the propellant tank was based on
propellant quantities prior to entry. Approximately 13 percent of propellant will
be in the APS tank prior to entry and will be settled in the -X end of the tank
by the OMS thrust during the deorbit burn. The bottom screen channel is placed
just below the bulk liquid surface at this propellant loading. Subsequent to

deorbit burn, propellant will be reoriented to the tank sump by entry drag forces,
D=5
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PROPELLANT ACQUISITION SCREEN CHANNEL DESIGN

» will remain in contact with one or both of the remaining screen

and therefore

ity

High +Z acceleration levels during entry will exceed the stabil

channels.

When this occurs, pressurant will enter the

limit of the acquisition device.

screen channels and levels within channels and collector will quickly drop until

they approximately match the liquid level in the tank bottom.

7
/

D
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D-3. INSULATION

Considerable research has been, and is being, devoted to development of high
performance insulation (HPI) concepts. In general, HPI concepts utilize sheets of
highly reflective metalized plastic film (such as aluminized mylar) made into
blankets. S8eparation of sheets in the blankets is provided by embossing, or
flocking, the basic film material, or by using a separator sheet such as netting
or glass fabrics. Many design variatioms are possible, and separate technology
studies arve currently underway tc establish optimum shuttle HPI designs. TFor
purposes of this study, however, differences in alternate HPI approaches would have
little effect on overall storage weight. For this reason, a typical HPI concept
was selected and used to optimize amount of insulation and to define reasonable
propellant storage and vent losses.

D-3.1 Insulation Selection/Optimization - MDAC (under an insulation technology

study for NASA, Contract No. NAS 8-21400) has investigated various HPI systems.
Based on this effort, typical insulation characteristics were selected for APS
tankage analysis. The selected scheme is made up of double aluminized mylar (DAM)
reflectors of 0.15 mil thickness with a dacron net separator. A density of 5 lb/ft3

based on a sheet density of 90 sheets per inch is representative of this insulation.

blanket samplss. Figure D-6 shows basic insulation characteristics and effective
conductivity degradation caused by perforations, joints, and attachments.

The data of Figure D-6, together with baseline propellant requirements, were
used to optimize HPI thickness for the shuttle mission. Insulation thickness was
tased on providing a maximum storage efficiency, (i.e., ratio of usable propellant
o total storage assembly weight). All heat was assumed to go into propellant
vaporization and boiloff. This assumption is in accordance with the thermal vent/
shroud system which converts the heat input into hydrogen vaporization. Resulting
optimum number of insulation layers and total weight of propellant vented, assuming
no heat shorts, are shown in Figure D-7 (as a function of orbit time). Optimum
insulation for the hydrogen tank had 62 sheets, and was 0.68 in thick, weighing
85 1b. This resulted in a hydrogen vent rate of 0.37 1lb/hr.

D~3,2 Reusability Characteristics - One of the major concerns in design of

the insulation is the reusability requirement: high confidence can be placed in

e

the prediction of basic HPI heat transfer characteristics and thermal performance.

i 8
[
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DOUBLY ALUMINIZED MYLAR (DAM) -~ DACRON NET SEPARATOR

15 IN LH, CALORIMETER TESTING - Ty = S0°R
BTU-FT
EFFECTIVE CONDUCTIVITY -
FTZHR-°R

BASIC INSULATION BLANKET 1.37 x107°

WITH 2.3% PERFORATIONS 1.69x 107

WITH PERFORATION AND JOINT 2.03 x 1073

WITH PERFORATION JOINT AND 2.217 x 1073

ATTACHMENT

REPORT #DC E0302
29 JANUARY 1971

MULTI-LAYER INSULATION MEASURED PERFORMANCE CHARACTERISTICS

80

70

60

50

40

30

@ DESIGN POINT

STORAGE TIME —- DAYS

OPTIMUM LH9 TANK INSULATION
(Assuming No Tank Pressure Rise)

MOCDORRELL DOUGLAS ASTRORAUTICS COMPARY « EAST

FIGURE D-6

FIGURE D-7

D~9



LOW PRESSURE APS REPORT MDC E0302
SUBTASK B 29 JANUARY 1971
However, the effects of multiple venting and pressurization cycles are not known.

Data are available to show that unprotected insulation would freely vent during
ascent without significant pressure gradients. However, no data are available to
show the effects of reentry on HPI performance. It is known, though, that any
form of condensation within the Mylar layers can cause severe degradation in
thermal characteristics. (Condensing and freezing water within the layers can
remove the aluminum coating from the Mylar.) Thus, a means of protecting the
insulation from atmospheric contamination is required. The following paragraphs
describe the candidate insulation concepts, their performance and the selection of
the preferred concept.

Three basic insulation concepts (illustrated in Figure D-8) were evaluated for
the hydrogen tank. The simplest concept uses an insulation purge with a noncondens-—
able gas. This allows use of a semi-rigid cover or flexible bag to protect the HPI.
With this concept, the effective conductivity of the insulation approaches that of
the purge gas during nonvented conditions. The second approach is a substrate
concept, in which foam insulation is used under HPI. The foam has a lower conduct-
ivity than helium-purged HPI and its thickness is sized so that nitrogen can be
used for ascent purging rather than helium (i.e., foam provides sufficient temper-
ature differential to prevent nitrogen condensation). For reentry, the foam will
be the temperature of the liquid propellant. Thus, to avoid cryo pumping on the
hydrogen tank, a noncondensing helium gas purge (concept B-1) or helium purge
followed by nitrogen purge (concept B-2) will be required during reentry. The
third protection concept employs a double walled dewar tank, maintaining a vacuum
in the insulation. This obviocusly results in maximum thermal performance, because
rhe insulation is always in a vacuum and boiloff losses during boost and entry
are minimized. However, the outer vacuum jacket is a significant structural
element, representing a high assembly weight penalty.

Propaellant losses for a typical mission were calculated for the three concepts.
These are shown in Figure D-9. A simple purge system has extremely high losses.
The substrate concept reduces these by a factor of nearly five but this is still
greater than the dewar system, which is subject to minimum propellant loss.

Figure D-10 compares total weight penalty for the alternate approaches. The
gimple purge assembly is obviously noncompetitive from a welght standpoint. Other
candidates are relatively close. The dewar system would eliminate the need for

purging and is competitive from a weight standpoint. However, the outer jacket
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SEMIRIGID COVER SEMIR!GID COVER OUTER VACUUM JACKET
OR FLEXIBLE BAG OR FLEXIBLE BAG (ISOGRID)
N,/HE PURGE EVACUATED HPI
PURGED* HP! FOAN
Y YSUB-STRATE
T f
| TANK WAL P
/——TANK WALL
A
A
N {
*HE FOR LH, >
GN, F
2 FOR LD, FOAM SUB-STRATE
‘ WITH GAS PURGE DOUBLE WALL
SIMPLE PURGED HP | ON HPI DEWAR TANK
CONCEPT A CONCEPT B ‘ CONCEPT C

BOOST/REENTRY THERMAL PROTECTION CONCEPTS
FIGURE D-8

weights shown for this concept are probably optimistic, as they are based on use
of an isogrid structure with a design safety factor of 1.5. If a safety factor
of 2 were used, as assumed for the rest of the assembly design, jacket weight
would increase to 360 1lb. On this basis, the preferred approach for hydrogen is
purged foam substrate. Although the weight penalty could be reduced by using a
dual reentry purge (helium folloyed by nitrogen), potential weight advantage is
small. For these reasons a singie purge gas (nitrogen for ascent and helium for
reentry) was selected. TFor the oxygen assembly, gaseous nitrogen can be used for
purge without a substrate. Performance of candidate oxygen concepts is shown in
Figure D-11. Weight penalties are smaller, and there is generally less observable
difference between concepts than was true for hydrogen systems. Either a dewar
tank or a simple nitrogen purge system appears practical. As with the hydrogen
systems discussed above, the dewar weights are believed to be optimistic. There-

fore the nitrogen purge system was selected for oxygen.
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GROUND HOLD |BOOST | EVACUATION | ORBIT | RE-ENTRY | TOTAL | REWMARKS
CONCEPT A 17.7 161 8.0 71 0.3 258
CONCEPT B
B-1 N, PURGE BOOST 2.6 19.1 33 71 0.3 97 {0.42 IN. FOAM
He ENTRY PURGE
B-2 N, PURGE BOOST 26 19.1 33 7 0.3 97 0.42 IN. FOAM
He/Ny DUAL GAS ENTRY
PURGE
CONCEPT ¢ 0.01 0.09 0.4 7 0 72
TOTAL MISSION LHy LOSSES
(All Heat Input Goes Into Boiloff) FIGURE D-9
CONCEPT A CONCEPTB-1 | CONCEPTB-2 | CONCEPTC
SIMPLE He PURGE | FOAM SUBSTRATE | FOAM SUBSTRATE | DEWAR TANK
SINGLE ENTRY | DUAL ENTRY
PURGE GAS PURGE GAS
LH, VENT LOSS 258 97 97 72
HARDWARE WEIGHTS
INCREASED TANKAGE 77 23 15 7
FOAM INSULATION - 2% 2 -
HP! OUTER JACKET 69 (2) 62 (2) 63 (2) 270 (3)
PURGE GAS SUPPLY SYSTEM 15 (1) 15 (1) 40 -
TOTAL 161 126 144 277
TOTAL WEIGHT PENALTY 419 223 241 349

HYDROGEN THERMAL PROTECTION SYSTEM COMPARISON

Low Pc APS

(1) IT WAS ASSUMED THAT HELIUM COULD BE TAKEN FROM EXISTING HELIUM RESIDUALS IN THE VEHICLE AND NO
PENALTY WAS CHARGED FOR THE GAS OR STORAGE BOTTLE.

(2) DUTER JACKET 1S 0.02 IN FIBERGLAS.
(3} ALUMINUM VACUUWM JACKET USING ISOGRID STRUCTURE CONCEPT.

D-12
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SIMPLE N, PURGE | DEWAR TANK |
LO, VENT LOSS 48 LBS 32
HARDWARE WEIGHTS
INCREASED TANKAGE 2 2
FOAM INSULATION - -
HP1 JACKET 2 50
PURGE GAS SUPPLY SYSTE 25 -
TOTAL Ly 52
TOTAL WEIGHT PENALTY: 95 LBS 85

OXYGEN THERMAL PROTECTION SYSTEM COMPARISON 7
FIGURE D-11

D-3.3 Tank Heat Shorts - Multilayer HPI is used to reduce propellant heat

transfer through tank wall. However, in any cryogenic tankage design, it is
necessary to give careful attention to the various heat shorts associated with

tank mounting structure and feed lines. Previous studies have shown that point
support with low conductivity trusses must be used to provide low support losses.
Figure D-12 shows the influence of support materials on general thermal performance.
As shown, fiberglass is one of the most attractive materials for tank support
because of its high strength, low density and low conductivity. Figure D-13

shows a typical layout for a tubular strut tank support system. Practical strut
dimension, weight, and heat transfer characteristics are also shown. Analyses were
conducted to identify heat short through the various lines to the tank. Results

are shown in Figure D-14.
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SIMPLE 4G TENSION SUPPORT — LOAD = 3000 LB
SUPPORT LENGTH =125 FT

100

1 /

1.0

SUPPORT HEAT FLUX - BTU/HR MEMBER

/—FIBERGLASS
0.10

/ ALUMINUM
/ITITANIUM
—STEEL

&
0.01

0.1 1 10 100
CONDUCTIVITY 1077 BTU-FT

YIELD LB-HR °R

SUPPORT

INFLUENCE OF SUPPORT MATERIAL SELECTION ON HEAT FLUX

FIGURE D-12

D14
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SUPPORT DIMENSIONS — [N
STRUT  LENGTH DIA THICKNESS

AB 126 5 0.055
AC 121 6 0.055
cD 115 6 0.100
A’B 38 ] 0.035
ATC 62 6 0.055
c'D’ 70 4.5 .045
WEIGHT

LH, SUPPORT SYSTEN . 50 LB
LO, SUPPORT SYSTEM -~ [7LB
ATTACHMENTS = 24 LB

HEAT INPUT -
LH, SUPPORT SYSTEM - 1.1 —

LO, SUPPORT SYSTEM 0.82 TR

\ FIBERGLASS TUBULAR STRUTS

TANKAGE SUPPORT SYSTEM

Orbiter B FIGURE D-13

HEAT TRANSFER RATE BTU/HR
LINE CONDUCTION | GAS CONDUCTION | RADIATION | TOTAL

LO, TANK: FILL/DRAIN (2% IN DIA) 1.53 0.1 0.73 2.36
FEED LINE {24 IN DIA) 1.53 0.1 0,73 2.38
VENT/PRESSURIZATION (1 IN DIA) 0.68 0.02 0.06 0.76
SCREEN VENTS (0.25 IN DIA LINES) 0.68 - - 0.68

6.16

LHy TANK: FILL/DRAIN (2% IN DIA) 1.74 0.87 0.73 3.34
FEED LINE (2% IN DIA) 1.74 0.87 0.73 3.34
VENT/PRESSURIZATION (1 IN DIA) 0.78 0.17 0.06 1.0
SCREEN VENTS (0.25 IN DIA LINES) 0.78 0.04 - 0.82

8.51

FEED LINE HEAT TRANSFER CHARACTERISTICS

Stainless Steel Lines Extending 1 Foot From Tankage Inner Shell FIGURE D-14
D-15
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D-4. VENT/CONDITIONING ASSEMBLY

Long term storage of cryogenics requires propellant venting for tank pressure
control. To avoid excessive losses, some technique for assuring vapor phase venting
must be provided. One of the most promising techniques for this is the "thermody-
namic separator", which converts vented liquid to gas in a heat exchanger. The
operation of the device is illustrated in Figure D-15. Liquid hydrogen enters the
vent system at condition A, and is throttled to point B to reduce its temperature.
After throttling, a two phase mixture exists. This is circulated in a heat
exchanger and heat transfer completes the vaporization until, at the heat exchanger
discharge, coolant has been completely vaporized (Point C).

D-4.1 Vent System Operation - The selected vent system in which liquid

hydrogen is extracted from the liquid positioning device, operates continuously
during the mission. Figure D-16 is a schematic of the vent concept. There are
three parallel circuits: one for feed line sump cooling, one for tank support
cooling, and one for insulation, pressurization and line cooling. The first two are
essentially the same for all heat exchanger approaches. All three circuits are
throttled to the same pressure, so that downstream pressure remains constant.
Hydrogen is extracted from the positioning device and throttled to reduce its
temperature by approximately 7°R. Definition of a fixed temperature difference in
this manner allows heat exchanger design to be independent of final tank pressure
selection. Seven degrees R was found to give a good balance between number of coils
for feed line/sump cooling and reasonable tube sizes for insulation cooling heat
exchanger. Hydrogen exhausted from the hydrogen tank cooling circuit is used to
provide oxygen tank cooling.

D-4.2 Heat Exchanger Concepts - The principal technical issue to be resolved

in vent assembly design was definition of the heat exchanger concept to be used.
Three basic options are feasible; (1) heat exchanger mounted directly to tank
structural shell, (2) radiation shroud heat exchanger in which cooling tubes are
separated from tank walls, and (3) compact (or internal) heat exchanger located
inside the propellant tank.

The simplest heat exchanger is the wall mounted approach. This was analyzed
in detail in Reference (c), where it became clear that tank wall temperature
distribution could lead to a significant level of stratification which would be
unacceptable to the APS, and that mixers would be required with this concept,
significantly complicating design.

D-16
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PRESSURE - LBF/IN 22 200
90—

80—

10§— 5

50—

TEMPERATURE - °R

| = /
B

| l | | | | | l |
1 2 3 4 5 6 7 8 9 10
ENTROPY - BTU/LB °R

HYDROGEN THERMODYNAMIC VENT DESIGN CHARACTERISTICS

20

FIGURE D-15

The use of a vent cooled radiation shroud, physically isolated from the tank
so that radiation is the controlling mode of heat transfer, will essentially
reduce radiation heat transfer to zero. Since shroud temperature is kept at or
below tank temperature, all heat through the insulation can be effectively inter-
cepted by the vaporizing coolant. Steady state performance of a device such as
this was analyzed assuming the tube-shroud arrangement shown in Figure D-17.

Use of a compact, pump driven heat exchanger inside the tank has been studied
and ground tested (References (d) and (e)). 1In this concept, tank fluid is
circulated over or through the heat exchanger by a low power pump/mixer, which
eliminates stratification and hot or cold spots in the tank due to unequal heat
transfer. A generalized mixer sizing analysis is shown in Reference (f) and (g).
Based on a conservative acceleration level of lO_Sg for the orbital gravity field,
necessary fluid and mixer parameters were developed (Figure D-18) together with

heat exchanger data.
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LH7 Tank
Pe = 15 LBF/IN?A
T = 365°%R
W =0.02 LB/HR
FEEDLINE/SUMP
2 I l 2
Po = 40 LBF/IN?A Pg =15 LBF/IN’A
T - 85% T - 36.5°R
LHy IN W - 0.02 LBMR
“ TANK SUPPORTS :
W - 0.45 LB/HR l | A\ —\_—"\_r
| Pe = 15 LBF/INA
T - 36,5 LBF/INA
W - 0.41 LB/HR
| RADIATION SHROUD
| l O
I PRESSURIZATION/
FILL LINES
VISCOJET
THROTTLE
L0y Tank
W- 003LBMHR, | | ——
T - 158°R =YYV 1 ]
FEEDLINE/SUMP
1] = | = TANKSUPPORTS g LB/HR | | | ——
| R s
VISCOJET RADIATION SHROUD
THROTTLE
W~ 0M0LBMR | | —=—
P
PRESSURIZATION / /}‘
FILL LINES FLOW
CONTROL
ORIFICES
VENT SYSTEM SCHEMATIC
D-18
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GH, OUT

Tyax = B.5R
W -0.45LB/HR

3 REQ'D

- 122°R
W - 0.45 LB/MR

—

FIGURE D-16
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0.125 DIA .010 WALL 15 GAGE DA WiTH

TUBULAR 1100 AL DACRON NET (30 SHEETS/IN)
EXTRUSION
BRAZED TO FOIL

15 GAGE DAM WITH
DACRON NET (30 SHEETS/IN)

0,001 1100 ALUMINUM
FOIL

@ 3 SHEETS DAM W

///r“DACR@NNET

f=-TANK WALL—§=
0.42 IN P.U. FOAN Lo.oos 1100 ALUMINUN FOIL
LH, TANK DACRON NET L0, TANK

i

COOLED RADIATION SHROUD INSTALLATION DETAIL

D, PASSES THICKNESS WEIGHT
H, SHROUD 22FT 14 0.005IN 2421L1B

0, SHROUD 1.92FT 9 0.001 IN 23LB

0.001 - 0.005 e 0,010
/ FOIL THESE SURFACES

0.010 / COATED WITH
A BRAZE MATERIAL

—-0.188

BRAZED JOINT
(TYP BOTH SIDES) MATERIAL -~ 1100 ALUMINUM

SHROUD CHARACTERISTICS FICURE D17

D-~4.3 Heat Exchanger Concept Comparison — The advantages and disadvantages of

the candidate heat exchanger concepts are summarized in Figure D-19. The vapor-
cooled radiation shroud concept is a light-weight, completely passive assembly,
with no moving parts; therefore, it has been selected as the vent heat exchanger
concept. Internal compact heat exchanger concepts have been extensively studied
and have demonstrated adequate tank pressure control in lg testing. However, no
low-g tests demonstrating destratification with very low-power mixers have been
performed, and the approach is complex. The tank wall-mounted heat exchanger is
also a rather complicated installation, which must be integrated with the basic

propellant tank. In addition, mixers would still be required.
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HEAT EXCHANGER CHARACTERISTICS
HEAT TRANSFER COEFFICIENT, BTU/HR-FTZ - OR
INSIDE 21.1
OUTSIDE 14.2
AREA, IN2 199
TUBE DIAMETER, IN 0.25
TUBE LENGTH, IN 253
HEAT EXCHANGER WEIGHT, LB 0.6
MXER CHARACTERISTICS
Hy 0,
INPUT POWER, WATTS 1.2 5.1
EFFICIENCY, PERCENT 10.0 14.0
MIXER WEIGHT, LB 0.6 0.8
QUTLET DIA, IN 1.0 1.0
BLADE DIA, IN 1.9 1.9
INTERFACE FLUID VELQCITY,FT/SEC  0.00592 0.00685
PUMPED FLOW RATE FTS/MIN 0.127 0.081
INCREASED H, VENT, LB 4.0 -
INTERNAL HEAT EXCHANGER/MIXER CHARACTERISTICS
FIGURE D-18
CONCEPT ADVANTAGES DISADVANTAGES
INTERNAL | 1. LIGHTWEIGHT 1. MIXER REQUIRED
2. STRATIFICATION ELIMINATED. 2. 0, MIXER MUST BE PURGED
3, SIMILAR SYSTEMS ARE STATE-OF-THE ART AND| 3. SLIGHT ADDITIONAL HEAT TO PROPELLANT
HAVE BEEN GROUND TESTED. REQUIRING ADDITIONAL VENTING.
4, LEAKAGE WILL NOT DEGRADE H, INSULATION | 4. MIXER RELIABILITY
5, FAIRLY SIMPLE INSTALLATION
WALL 1, FAIRLY LIGHTWEIGHT 1. MIXER REQUIRED BECAUSE OF STRATIFICATION
MOUNTED | 2, STRATIFICATION ELIMINATED 2. 0, MIXER MUST BE PURGED
3. SYSTEM IS STATE-OF-THE-ART AND HAS BEEN | 3. SLIGHT ADDITIONAL HEAT TO PROPELLANT
GROUND TESTED REQUIRING ADDITIONAL VENTING.
4. WIXER RELIABILITY
5. COMPLEX FABRICATION AND INSTALLATION
6. LEAKAGE MAY DEGRADE INSULATION
COOLED 1, ELIMINATE MIXER IN TANKS 1. SYSTEM HAS NOT BEEN DEVELOPED OR GROUND
RADIATION | 2. SIMPLEST SYSTEM (COMPLETELY PASSIVE) TESTED
SHROUD 3. LOWEST VENT REQUIREMENT 2. HEAVIER
4, CAN BE GROUND-TESTED 3. SOMEWHAT COMPLEX FABRICATION AND
INSTALLATION
HEAT EXCHANGER CONCEPT COMPARISON FIGURE D-19
D20
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D-5. PRESSURIZATION

Minimum pressure of 35 lbf/inza is required at main tank passive heat exchanger
inlet. Three pressurization concepts to satisfy this requirement for hydrogen were
evaluated during Subtask B. These were: (1) cold helium pressurization, (2) auto-
genous pressurization using compressed main engine tank vapors, and (3) low NPSP
low head rise boost pumps. Cold helium was selected for oxygen pressurization,
based on earlier Subtask A results. Subtask B requirements did not warrant
reevaluation of oxygen pressurization concepts. The following paragraphs describe
the hydrogen pressurization comparison and selection, followed by a summary of

hydrogen and oxygen concepts weights and physical characteristics.
Cold Helium - Helium is stored at 3000 lbf/inza in a separate tank submerged

within the hydrogen tank and regulated to 35 lbf/inza APS tank pressure. Design

of the assembly was straightforward, since the pressurization process was
essentially isothermal. The tank pressure level is continuously maintained at

35 lbf/inza. However, during extraction, the propellant vaporization rate will

not be sufficient to maintain the propellant partial pressure. In this event,

the partial pressure of helium will increase during extraction. After extraction
has ceased, the propellant will vaporize until equilibrium vapor pressure condi-
tions are again satisfied, and tank pressure will increase, due to excessive helium
inflow, above 35 lbf/inza. An evaluation of the maximum pressure to be encountered
during the mission indicates that the pressure rise will not exceed 40 lbfﬁinzaa
This pressure level is within tankage minimum gage strength capability and below
the tank vent pressure, thus no weight penalty is involved.

Autogenous - With this concept, warm propellant vapors are drawn from main
engine tank and compressed to 35 lbf/inza. Continuous tank pressurization was
maintained to satisfy APS usage requirements which could occur anytime during the
mission. For autogenous pressurization, the amount of liquid-vapor heat transfer
is important. Heat transfer will raise liquid temperature until the liquid (or a
significant portion of it) reaches saturation temperature at tank operating
pressure. In addition, heat transfer from pressurant to liquid will increase
required pressurant flow rate (a significant factor for compressor design).

Based on approximate heat transfer calculations and baseline mission definition,
maximum pressurant flow rate required to compensate for heat loss is 1.35 ftgfseca

Added to the maximum propellant outflow rate of 1.65 ft3/sec, total pressurant flow

D21
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rate regquirement becomes 3.0 ft3/sec. Three compressor units, with two operating
simultanecusly to produce the requisite design conditions, provided redundancy.
Compressor design data is tabulated in Figure D-20.

Boost Pumps - Consideration was also given to tank sump mounted, low head rise
boost pumps. Pump design data for a completely submerged boost pump was furnished
by Pesco Products, and isbshown in Figure D-21. The pump would be completely sub-
merged, with the impeller located in the APS acquisition channel sump. - The pump
has low weight, and requires zeroc NPSH and no technology advancement. Helium
repressurization was deemed necessary, not from pump inlet requirements, but from
the necessity of suppressing nucleate boiling, which could affect propellant
acquisition later in the mission. Prepressurization to 40 lbf/in2 was selected to
provide a margin of 0.5 lbf/inza above vapor pressure at end of expulsion, when
tank pressure is minimum.

Concept Comparison — Comparison of hydrogen pressurization concepts is given

in Figure D-22, Both helium and compressor approaches are heavy. The boost pump
assembly was selected, therefore, on the basis of its low weight, simplicity,

and desirable lack of new technology requirements.

COMPRESSOR
INLET PRESSURE, LBF 1N 24, 2
OUTLET PRESSURE. LBF/IN ZA 30
INLET TEMPERATURE, °R 500
OUTLET TEMPERATURE, °R 641
FLOW RATE, LB/SEC 0.0126
VOI UMETRIC FLOW, CF$ 1.52
SHAFT HORSEPOWER, HP 8.8
SHAFT SPEED, RPN . , 42,600
SPECIFIC SPEED, RPM (CFS) 7 (FT)4 20
NUMBER STAGES ]
EFFICIENCY, PERCENT 435
HEAD RISE, FT 166,365
INTERFACE
IMPELLER DIAMETER, IN 7.4
HOUSING DIAMETER, IN 8.9
HOUSING LENGTH, IN 10.8
INLET DIAMETER, IN 0.54
EXIT DIAMETER, IN 1.5
WEIGHT, LB 37
MOTOR
POWER, HP 8.8
VOLTAGE 28 vOC
WATTS 8,200
EFFICIENCY, PERCENT 80
SPEED, RPM 17,000
INTERFACE
DIAMETER, IN 8
LENGTH, IN 16
WEIGHT, LB 18
GEARBOX
WEIGHT, LBS 15
LENGTH, IN 3
GEARBOX RATIO 2.41
SYSTEM
LENGTH, IN i)
WEIGHT, LB 68

HYDROGEN CENTRIFUGAL COMPRESSOR DESIGN DATA FIGURE D-20
D=22
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o
HEAD RISE 20 LBF/IN 2
FLOW RATE 370 GPM
DIAMETER 6 IN.
SPEED 11,400 RPM
POWER 6.1 HP
WEIGHT 242 LB

(Based On PESCO Design Data)

E?E; RS

NN 1 ;
— NSRS

She ‘

\%'/\ %X XX

A

i

16 IN. é

HYDROGEN BOOST PUMP DESIGN AND CHARACTERISTICS
FIGURE D-21

o HEAT EXCHANGER INLET PRESSURE - 35 LBF/IN’A
o WEIGHTS INCLUDE REDUNDANCY

HELIUM PREPRESS/BOOST PUMP

o WEIGHT PENALTY = 170 LB
o SMALL CENTRIFUGAL PUMP /
o 6 HP ELECTRIC MOTOR

COMPRESSOR o WEIGHT PENALTY - 333 LB
o FOUR STAGE CENTRIFUGAL COMPRESSOR
e 3 HP ELECTRIC MOTOR
o SENSITIVE TO MAIN TANK PRESSURE AND
AAA TEMPERATURE FLUCTUATIONS

COLD HELIUM o WEIGHT PENALTY - 444 LB
o NO SIGNIFICANT POWER REQUIREMENTS
S R ) AA v/ SELECTED SYSTEM

HYDROGEN TANKAGE PRESSURIZATION CONCEPTS

FIGURE D-22

D-23
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D-6. TANKAGE INTEGRATION

ATS propellants may be stored in separate, nonintegral tankage, or may be
integrated with OMS propellant supply. Choice of integration concept depends on
penalties involved with a combined subsystem designed for the most stringent
combination of requirements compared with separate subsystems which could be
designed specifically for a given set of requirements. In the case of the APS,

i+

the integrated concept must provide sufficient pressurant to meet the pressure

ot

levels required by the APS (35 lbf/inza) whereas the OMS would only require pressuri-
zation to 30 psia. Weights and requirements of separate and integrated concepts
is given in Figure D-23. Several hydrogen pressurization schemes have been
included to show their effect on subsystem weight. For separate subsystems, boost
pump APS pressurization and autogenous OMS pressurization were selected. OMS
welghts shown reflect use of RL-10 engines (as discussed in Section 4.2.2). Here,
OMS acquisition was assumed to be provided by APS settling burns. Integrated sub-
system weights are best satisfied by using APS boost pumps, which can readily
satisfy OMS flow requirements. Little weight difference between minimum weight
concepts can be noted; thus, selection of separate or integrated tankage should be
based on other factors. _

Integrated tankage assemblies present several peculiar problems vis-a-vis
ceparate tanks. Integrated tankage is larger, reducing passive acquisition sub-
system design margins, and increasing development risk, since screen devices are
sensitive to size and liquid head (i.e., tank length). In addition, integrated
tankage is less suited to propellant off-loading, since the acquisition device
must remain submerged during launch. Packaging volume differences between concepts
are relatively small, and should prove to be of minimal concern. Separate concepts
thus offer operational, weight, and developmental advantages, and, on these bases,

were selected for the APS.

D24
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SUBTASK B
gé‘l:‘é‘EpT SEPARATE OMS APS TANKS INTEGRATED
VARIABLE APS omS OMS ‘APS TANKS
PRESSURIZATION () | COLDHELIUM |, PREPRESS | COLD HELIUM | AUTOGENOUS | COLD HELIUM |H, PREPRESS
CONCEPT PUNP APS PUNP
(0,) COLD HELIUM | COLD HELIUM | COLD HELIUM | COLD HELIUM | COLD HELIUM | COLD HELIUM
TANK PRESSURES, (H,) 36 ) 30 30 36 )
(LBF/IN2A) (©)) % 36 30 30 3 36
WEIGHTS, (LB)
PROPELLANT (H,) 2,260 2,260 4,022 4,022 6.206 6,206
(0) 5.799 5799 18,943 18,943 28,742 24742
TANKAGE (Hy) 551 551 805 805 1070 1.100
(07 236 236 520 520 680 680
THERMAL VENT SYSTEM 32 32 73 73 89 89
HELIUM SYSTEM 420 104 592 62 1,255 380
PUMP/MOTORS " 73 . " = 77
ELECTRICAL POWER ’ 1 . " A 5
(TOTAL) (9,298) (9,054) (26,955) (24,425) (34,042) (33.275)
(\/ ) <\/ )
SUNMMARY ‘\/ ) WEIGHT SEPARATE SYSTEMS 33,479
WEIGHT INTEGRATED SYSTENMS - 33.275
<\/ ) SELECTED
TANKAGE INTEGRATION WEIGHT SUMMARY
FIGURE D-23
D-25
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D-7. TANKAGE DESIGN SUMMARY

Individual subassembly design characteristics have been discussed in preceding
sections. The complete assembly is summarized below.

The Orbiter LO2 tank is pressurized by a regulated supply of helium. The
helium pressurant storage tank is mounted inside the LO2 tank to take advantage of

volumetric efficiency gained by storing the pressurant at L0, temperatures.

Hydrogen pressure is provided by low head rise boost pumps 1§cated in the tank sump.
The LH2 tank will be prepressurized with helium to 40 lbf/inza. As the LH2 supply
is depleted, tank pressure will drop to approximately 20 lbf/inza. This pressure
is sufficient to maintain a positive NPSP of at least 0.5 lbf/inza at pump inlets,
and will suppress nucleate boiling (which could be encountered during operation at
saturated conditions).

The tankage concept consists of 2219 aluminum basic pressure vessel, layer of
foam (on the LH2 tank only), cooling shroud made of 0.125 inch diameter aluminum
tubing brazed to an aluminum heat barrier, blanket of HPI, and fiberglass outer
shell. Figure D-24 illustrates the tank assembly. Cooling shroud temperature is

maintained by continuous hydrogen vent. LH, is extracted for cooling, expanded and

subcooled 7°R, then routed to shroud, tank iupports and penetrations, where it
vaporizes and absorbs tank heat leak. Thermal vent requirements are shown in
Figure D-25. The fiberglass outer shell serves as an environmental shield for
the tank thermal insulation system. On the ground, comstant GN2 purge provides an
inert atmosphere surrounding the HPI, protecting it against contamination and
corrosion. On orbit, the fiberglass shell is vented to vacuum to enable HPI to
function as evacuated radiation shields. On reentry either helium (for the hydro-
gen tank) or nitrogen (for the oxygen tank) is purged through the cavity between
outer shell and tank to prevent the shell from collapsing, as well as to inhibit
atmospheric contamination of the HPI.

Propellant acquisition is accomplished through use of screen channels illus-
trated in Figure D-26. Screen channels are placed in such a position that some
portion of screen will always be 'wetted", thereby ensuring fluid flow to fill

tank sump channels.

A weight breakdown of the tank assemblies is summarized in Figure D-27.

D-26
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SUBTASK B
COOLING SHROUD
(L MIL FOIL)
FIBERGLASS 1/8 DIA
OUTER SHELL—\ TUBING
‘ INSULATION BLANKET
(ORANGE PEEL)
| Ny
iy PURGE PURGE PORT
VENT
F LAUNCH G
He FILL/VENT REENTRY G
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(L0, TANK ONLY) f FILL

CRYOFOAM : /2 // PRESSURE VESSEL
(LH7 TANK ONLY) : (2219-T87 AL)
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LH, PUNPS (3) s SCREEN CHANNEL
\ ACQUISITION RINGS (3)
Hy THERMO I\ TANK
eN— | L~ OUTLET

PROPELLANT TANK INSULATION/COOLING CONCEPT
FIGURE D-24

ORBITER B

LH, L0,

INSULATION (BTU/HR) 72 313
TANK SUPPORTS (BTU/HR) 1.1 1.0
PRESSURIZATION/FILL LINES (BTU/HR) 5.2 3.8
SUNP/FEEDLINE (BTU/HR) 3.4 2.4
REQUIRED VENT RATE (LB/HR) 0.44 0
TOTAL VENTED WEIGHT (LB) 8 0

(8-DAY MISSION)

APS PROPELLANT STORAGE AND VENT SUBSYSTEM IN-ORBIT HEAT INPUT SUMMARY
FIGURE D-25
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BOOST ACCELERATION

STRUCTURAL COMPONENTS
PROPELLANT TANK
FIBERGLASS SHELL (INCLUDING SUPPORTS)
PROPELLANT ACQUISITION DEVICE
TANK MOUNTS

TANK INSULATION
FOAM SUBSTRATE
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INSULATION BLANKET

INSULATION SUPPORTS
COOLANT LooP

SHROUD

VALVES, CONTROLS
PRESSURIZATION

TOTAL

PROPELLANT STORAGE ASSEMBLY — TANK WEIGHT SUMMARY
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TYPICAL SCREEN
COVERED ALUMINUM
CHANNEL
SECTION A—A
PROPELLANT | SCREEN SIZE CHANNEL SIZE (IN)
0, 250 x 1370 (17,1) | 3 x6
200 x 600 (40/4)
Hy 325 x 2300 (10k) | Sx8
200 x 600 (404)
APS PROPELLANT ACQUISITION DEVICE
FIGURE D-26
HYDROGEN | OXYGEN
(LB) (LB)
224 51
98 22
105 37
62 50
31 -
9 32
10 3
28 2
4 4
159 32
820 233
FIGURE D-27
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E-1. DESIGN ANALYSES

Detailed analyses were performed:
(1) to define APS design parameters such as chamber pressure, mixture ratio,
and expansion ratio

(2) to establish the subsystem operating pressures and pressure balances, and

(3) to define the subsystem feed line installation details.
This effort paralleled the operating characteristics evaluation described in
Appendix B, which defined subsystem performance in terms of usable propellant
weight, main engine tank temperature and pressure profiles, liquid-vapor mixer
requirements and performance, and, finally, engine inlet conditions. Both studies
described above are strongly interdependent, but were performed separately to
reduce the number of variables in each study, thus greatly simplifying the analyti-

cal effort.

m
L

MCDORRELL DOUGILAS ASTRORNAUTICS COMPARY = EAST



LOW PRESSURE APS

REPORT MDC E0302
SUBTASK B

29 JANUARY 1971
E-2. DESIGN PROGRAM

Low pressure APS inert hardware weight is a significant portion of total sub-

system weight. Therefore, the APS is particularly sensitive to chamber pressure

definition, feed line sizing, and subsystem mixture ratio. A computer program was
developed to size the APS, and was used to define optimum subsystem design parameters.
Operation of the program is illustrated by the flow diagram shown in Figure E-1.

Engines, lines, and valves were sized as a function of chamber pressure for
the lowest main engine tank pressures. Each specific valve and line segment was
cized for the appropriate flow rate and available pressure budget. Optimum chamber
pressure was then selected to provide minimum feed system weight. Minimum weight
occurs where increases in line and valve weight (due to reduced available pressure
budget) are matched by decreases in engine weight (due to higher chamber pressure).

The APS upstream of the main engine tanks consists of pressurization, pro-
pellant, propellant tankage, passive heat exchanger, and liquid/vapor mixer assem-—
blies. These were sized in accordance with models based largely on existing hard-
ware and previous subsystem designs. These models were updated throughout the

study as additional design data, such as the tankage design data in Appendix D,
became available.

The sizing routines described above were performed for each expansion ratio
and mixture ratio desired. In this manner subsystem weight, subassembly weights,
ind subassembly design characteristics were defined for each mixture and expansion

ratio thus facilitating final subsystem selection.

MCDORNNELL DOUGLAS ASTRONAUTICS COMPANRNY = EAST
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ENGINE WEIGHT
)@ VS CHANBER
PRESSURE
OPERAS'IS'I\:'JDNIZDL REQUIREMENTS AND CHAMBER PRESSURE VALVE WEIGHT
ATIONAL 1 PERFORMANCE 5 Corimenon < VS AREA, PRESSURE
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DISTRIBUTION @~ VS DIANETER,
ASSENBLY DEFINITION PRESSURE DROP

MIXTURE RATIO, |

EXPANSION RATIO < ﬁgg'ENLE PERFORMANCE

ITERATION
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ASSEMBLY DEFINITION MODEL

v | HEAT EXCHANGER
SUBSYSTEN AND | MODEL
ASSEMBLY WEIGHT AND
SIZING DEFINITION
LOW PRESSURE APS DESIGN COMPUTER MODEL
FIGURE E-1
E-3
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E-3. FEED LINE DESIGN

Feed line design was established in sufficient detail to allow accurate
weight estimates and chamber pressure optimization. This effort included:

{1} Feed line installation and routing

(2) Feed line sizing by segments in accordance with individual flow and

pressure balances, and

{3} Definition of line supports, joints and compensators.

The feed line distribution model, feed line sizes, and material selection were
described earlier in Section 6. Specific line supports and compensator locations
and gizing are described below.

Low pressure lines were sized using standard aircraft minimum gauges defined
by handling and manufacturing requirements. Maximum unsupported line length was
defined in accordance with induced bending stress and minimum gauge strength
characteristics, and is shown in Figure E-2, Although supports are only required
approximately every 30 ft for a straight run, additional supports are required in
the feed system to accommodate shorter runs and manifolding.

Bellows assemblies were placed in each line segment to accommodate manufactur—
ing tolerances, to account for large thermal contractions, and to compensate for
launch vibrational motions. Both angular and linear compensators are used. A
review of current compensator designs indicated that socket type angulation
bellows and in-line type linear compensators provided the highest reliability, low-
est pressure drop, and relatively low weights. Characteristics of these compen-
sators are shown in Figure E-3, as are both aluminum and stainless steel weights.
Weight of the stainless compensators with aluminum lines includes the use of bi-
metallic aluminum/stainless steel joints, where applicable. Linear compensator
weights were defined using the thermal contraction associated with a 600°F temper-
ature change (conservative) and realistic manufacturing tolerances. The compen-
sator length was set to be three times the anticipated linear movement required,
plus dia/2 for end fittings.

Figure F-4 presents a weight comparison of stainless steel and aluminum
assemblies. A significant weight advantage is shown for the all-aluminum assembly.
Though aluminum bellows have not been extensively used in the past, data from
bellows manufacturers show that aluminum bellows will be satisfactory as long as
high pressures and large deflections are avoided. Since these conditions do not

occur in the low pressure APS, an all-aluminum assembly was selected.

Eed
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STAINLESS STEEL BELLOWS ALUMINUM BELLOWS
COMPONENT STAINLESS STEEL | ALUMINUM | STAINLESS STEEL | ALUMINUM
LINES LINES LINES LINES
LINES 708 387 576 432
BIMETALLIC JOINTS - 132 45 -
LINEAR COMPENSATORS 390 449 195 224
ANGULAR COMPENSATORS 287 287 144 144
TOTAL 1385 1255 960 800
&)
(\/) SELECTION
ALUMINUM AND STAINLESS STEEL LINE WEIGHT COMPARISON
Orbiter B

FIGURE E-4
E~7
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E-4. ENGINE ISOLATION VALVES

The achievement of fail operational/fail safe capability relies on isolating

failed~open or leaking engine valve, thus preventing excessive loss of propellant.

o

]

valuation of alternate isolation valve concepts was performed during Subtask A.

-

fg

he selected concept uses an isolation valve for each engine vring (4 engines) to
protect against a single failure, and a backup isolation valve for two rings in the
event of two failures. Since the isolation valve blocks flow to four engines,
actuation would result in the shutdown of operational engines. This was accom-
modated by providing sufficient engine thrust level and number of engines to satisfy
operational (nominal) requirements with one ring inoperative and safe (minimum)
requirements with two rings out. Shutdown of engine rings not only reduces the
number of isolation valves regquired, but also prevents control axis cross-coupling
after a failure, since torques remain balanced.

The disclation valve is a Martin Marietta visor-type valve, shown in Figure E-5.

Valve characteristics are:

weight, 1b 16

diameter, in 7

response time, sec 3.5 (0.25 sec with minor modification)
maximum leakage, 3 x 1076

SCC Helium/sec
The valve consists of a 6061-T6 aluminum housing, 17-7PH stainless steel
poppet, bridge and shaft, Teflon poppet seal, a 28 vdc permanent magnet motor and
associated switches and controls. Sequence of operation is illustrated in Figure
E~6., An eccentric shaft transmits a force to the bridge and poppet through a link
and pin. In the initial sequence, the poppet is drawn away from the seat and held
in alignment by a guide pin in longitudinal slots in the bridge. After the shaft
has votated 180 deg, the poppet and bridge are tilted to a position in line with
the fiuid flow. The reverse action occurs when the valve is closed. The valve is

provided with position controls for both open and closed poppet. In the closed

¥

osition, the poppet is locked by over center camming and by locking the shaft

=

through the reduction gearing by a magnetic brake on the motor shaft, while in the
open position, the valve shaft is locked by the same magnetic brake and the poppet

iz held open by fluid flow forces.

E-8
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E-5. APS INSTALLATION

The booster APS installation is shown in Figure E~7. The engines were in-
stalled‘in available locations forward, between and aft of the main engine tanks.
This arrangement proved to be the most advantageous in terms of APS engine number
and thrust levels (Section 3.0). The subsystem uses the main engine pressurization
lines for propellant distribution, thus minimizing APS manifolding. A total of
twenty 2500 1b thrust engines have been installed in such a manner that no engine
penetrates the lower thermal protection. The forward pitch~roll engines are
canted outward to avoid APS plume impingement on the orbiter during critical
Staging operations.

The orbiter APS installation is shown in Figure E-8. Again the engines have
been installed forward and aft of the main engine tanks, and no engines penetrate
the lower heat sheild surface. Attitude and vertical maneuvering requirements are
satisfied by the four rings of four engines each. Yaw and lateral tramslation
maneuvers are accomplished with two groups of side mounted engines, installed fore
and aft of the vehicle cg. 8Six base-mounted and three nose-mounted engines provide
fore/aft translation. A separate; high thrust OMS provides the large maneuvers
and is installed in the aft end of the orbiter. The OMS installation reflects
propellant and engine envelopes associated with an RL1O engine subsystem providing
1150 ft/sec maneuvering capability. The APS performs the remaining small maneuver
and attitude control requirements. Separate APS storage tanks have been provided
forward of the cargo module to meet APS requirements. Liquid propellants from the
APS storage tanks are delivered to tank mounted heat exchangers, where they are
conditioned for main engine tank resupply. Vapors are drawn from the main engine
tanks, mixed with liquid propellants to control engine inlet conditiomns, and

delivered to the engines through main engine tank pressurization lines.

PACDORMNELL DOUQGLAS ASTROMAUTICE COMPARY « EAST




REPORT MDC E0302

LOW PRESSURE APS

SUBTASK B

29 JANUARY 1971

4315008 — W3LSASENS NOISTINdOY¥d
AYVITIXNY JUNSSIUd MOT — NOILVTTVLSNI

FIGURE E-~7

W3LSAS 15008 — INIT
NOILYZI¥NSSTUd YNV %0

//susz 15008 - 3N

© NOILYZINNSSINd MNVL CH

’

E-12

MCDORNNELL DOUGLAS ASTRORNAUTICS COMPARIY = EAST



LSUT = ARVAAIOD SIILNVNOYISY SV IDNOT TTINRNOTIN
Ei~-3

§=~d 34N9ld

H3LI840 — WILSASENS NOISTINdOY¥d
AHVITIXNY J4NSSTHd MOT — NOITLYTTVLSNI

/i g | - = YaXIW ¥OAYA - aIndI
; | ) g SYOLYINIIY KOS S

SINIINT SWO WNVL 41 sdv

WNYL 07 sav
S3ATVA T04.LNOD ¥IIMVHIXI LvH %0

[~

} o e T =8 Ty
ST 77 R 5 PR
! // ST
\ \“._z: NOILYHNSSIYd 15008 OH

_. H3IXIE ¥O4VA — QINdIT %H
UIDWYHOXZ LYIH JAISSYd OH

SHOLYINOIY ROT Sl

SIATYA TOULKOD ¥IDNYHOXI L¥aH i

LLEL AAVIINYL 62 g sv.Lgns
20804 DAW L¥043Y Sdv JdNssddd Mot




LOW PRESSURE APS REPORT MDC E0302
SUBTASK B 29 JANUARY 1971

APPENDIX F
SPACE SHUTTLE VEHICLE DESCRIPTION AND REQUIREMENTS
F-1. INTRODUCTION

This appendix describes the vehicle configurations and mission requirements
which were used as a basis for the Subtask B APS design definition studies. Two
vehicles, one booster and one orbiter, were selected by the NASA. The booster
was a single~body stage employing swept wings and a canard. The orblter vehicle
selected (identified as orbiter B) was a straight wing low cross-range stage which
was designed to reenter at a high angle of attack to minimize vehicle heating rates
and temperatures. The overall vehicle/mission requirements, subsystem and com-
ponent design criteria and vehicle configurations and characteristice are described
in the following paragraphs. Deviations from the requirements of this appendix,

as noted elsewhere in this report, were made with the expressed knowledge and con—

sent of the NASA technical director.
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F-2. MISSION REQUIREMENTS

A general description of the missions and their requirements are shown in
Figure F-1l. The reference mission used in designing the APS was the logistics
resupply mission of a space station or space base. The design reference orbit was
a 270 nautical mile circular orbit, with a 55 degree inclination.

The mission timelines for the Space Station/Base Logistics Mission are pre-
sented in Figures F-2 and F-3. Because the in-plane phasing with a space station

iv will be random over long periods of shuttle launch opportunities, an

vd orbit) rendezvous and a late (17th orbit) rendezvous are necessary to
cover both small and large phase angle variations at orbit imsertion. Figure F-2
presents the orbiter third-orbit rendezvous timeline. Figure F-3 presents the
17+h orbit rendezvous timeline, and Figure F-4 presents the booster timeline.
The AV requirement to be provided for attitude maneuvers not listed in the time-
lines, is 10 ft/sec for the orbiter and 4 ft/sec for the booster, both based on
vehicle main engine cutoff weights. '

The maneuvering requirements for the orbiter and booster during the Space

Station/Base Logistics Mission are shown in Figures F-5 and F-6.

Fe

[
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SUBTASK B
30k
F; 24
o 7
; %
: 7
w 20}
o 175 /
2 7 /
2 / 16
[
g 7
X 1wopg2 19
g 7
E /)
2 6.1 3.8
25
0
EVENT 2 I 3 J 4 ' 5_J
- EVENT 0.7 0.2 1
DURATION TO 70 | TO
MINUTES 0.8 0.3 5
EVENT
COMPLETION
TIME* EVENT PROPULSION REQUIREMENT DESCRIPTION
i. 0 Staging Separation of booster and orbiter
(No APS requirement)
2, 0+ Post Separation  Damping of main engine cutoff and separation
transients.
3. 0.7-0.8 Orientation Maneuver vehicle to reentry attitude.
4. 0.9-1.1 Attitude hold +2° deadband
5. 1.9-6.1 Entry +2° deadband

*Time is referenced to Event 1 in minutes unless otherwise stated. Doth
minimum and maximum cumulative times are shown.

SPACE STATION/BASE LOGISTICS MISSION
TIMELINE — BOOSTER’ FIGURE F—4
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The APS

must fail ope
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F-3. SUBSYSTEM/COMPONENT DESIGN CRITERIA

is constrained to operate for a minimum of 100 mission cycles over an

eight vear period without major overhaul or refurbishment. Additionally, the APS

rational after failure of any criterial component, and after the

second failure must provide safe operation for crew survival. Specific criteria

applied to APS design are summarized below:

{1} A material ultimate factor of 2.0 was applied to stresses resulting from

pressure conditions, separate from other loads.

{2) Wo propellant reserve was added to that estimated to be consumed in a

mission cycle.

{3y Fluid line sizes were selected on the basis of design velocities that

resulted in acceptable compromise between the excessive pressure drop

produced by small diameter tubing and the weight and cost of large

diameter tubing. Gas velocities were limited to Mach 0.3 or less.

(4) Flight components were limited to those required for flight operatioms,

except for components required for on-board checkout and servicing.

Component integration, packaging, and simplicity of checkout was con-

sidered where advantages in maintainability, serviceability, replace-

ability, weight and cost could be realized.

.~
Wi
e

cor

Provisions for ease of inspection, servicing and maintenance was in-

porated in the subsystems and component design to meet the short

turn~around and launch preparation requirement.

F-18
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F-4., BOOSTER CHARACTERISTICS

The booster is a single-body stage employing swept wings and a canard. Lift-
off weight of the booster is approximately 2,840,000 1b. Airbreathing cruise
engines are mounted in the canard for flyback and ferry operatioms.

External and internal profile information is presented in Figures F-7 and
F-8. Further information on mass characteristics, tankage, propellant residuals,
and heating enviromments is given in Figures F-9 through F-11. Auxiliary propul-
sion thruster locations are shown in Figure F-12. The relationship of vehicle tank

vent pressure versus tank weight increase is presented in Figure F-13.
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External profile ol booster.
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FIGURE F-7
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Internal profile of booster.
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FIGURE F-8
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Staging Initiation of Jet
Mass Characteristics (Booster Burnout) Powered Flight
Weight (lb) 474,876 451,219
Center of Gravity X -2010 -2004
Location (in.) Y 0 0
Z 13 14
Moment of Inertia Ixx 7.017 7.016
(slug — ft? Iyy 53.918 51.25
¥ 10%) Izz 57.013 54. 354

MASS CHARACTERISTICS OF BOOSTER

Liquid Hydrogen |Liquid Oxygen | Liquid Hydrogen

Tankage Characteristics Tank, Boost Tank, Boost | Tank, Jet Fuel
Volume (ft3) 82, 951 29, 885 9692
Pressurization Range (psia) 25-217 25-27 30-32
Vent Pressure Range (psia) 28-30 26-30 34-36
Surface Area (ft?) 12, 520 5030
Weight (1b)

Tank 39, 524 11, 842

Insulation 3030

PROPELLANT TANKAGE
CHARACTERISTICS OF BOOSTER FIGURE F-9

F=22
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Liquid Hydrogen|Liquid Oxygen
Residgal Characteristics Boost Tank Boost Tank

Mass at burnout (1lb) l6886 18,796
Mass percent liquid (%) 88 76
femperatu;*e of vapor (°R) 450 520
Total pressure (psia) 26 26
Heat leak into liquid propellant (Btu/hr/ftz) 100-330 100-1000
Mass of helium pressurant (lb) 03 0

* Autogenous pressurization system assumed.

RESIDUAL PROPELLANTS OF BOOSTER
FIGURE F-10
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Thrust Vector
Location (in.) Direction Cosine
Thruster X Y Z X Y Z
Pitch -858 12 193 0 0 -1 |
Pitch . -858 -12 193 0 0 ~1 i
Yaw -858 192 12 0 -1 0 |
Yaw -858 192 -12 0 -1 0
Pitch -858 12 -190 0 0 1 |
Pitch -858 -12 -190 0 0 1
Yaw -858 -192 12 0 1 0
Yaw -858 -192 -12 0 1 0
Roll/Pitch -2658 552 215 | 0 0 -1
Roll/ Pitch -2658 552 154 0 0 1
Roll/Pitch -2658 -552 215 0 0 -1
Roll/Pitch -2658 -552 154 0 0 1
Yaw -2778 745 195 0 -1 0
Yaw -2796 745 195 0 -1 0
Yaw -2778 -745 195 0 1 0
Yaw -2796 -745 195 0 1 0

AUXILIARY PROPULSION SYSTE.\I
THRUSTER LOCATIONS — BOOSTER FIGURE F-12
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80 —
TANK MATERIAL — 2219-T62 ALUMINUM

70 —f

60 —

40

30 <

MAXIMUM WEIGHT INCREASE (lbs x 10'3’

MAXIMUM VENT PRESSURE (psia)

Tank weight sensitivity — booster.

FIGURE F-13
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F-5. ORBITER B CHARACTERISTICS

Orbiter B is a straight-wing, low cross~range stage. The orbiter weight at
booster/orbiter separation is approximately 665,000 1b. Airbreathing engines are
located in pods on each side of the fuselage for flyback and ferry operations.

External and intermal profile Information is presented in Figures F-14 and
F-15. Further information on mass characteristics, tankage, propellant residuals,
and heating environments is presented in Figure F-16 through F-18. Auxiliary

propulsion thruster locations are listed in Figure F-19.

F-27
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Hydrogen Oxygen
Residual Chgracteristics Boost Tank Boost Tank
Liguid Mass at burnout (lb) 736 2440
Vapor mass at burnout (lb) 167 1191
Helium.mass in the tank (lb) 2.95 1.18
Vapor temperature at burnout (°R) 454 379
Tank pressure at burnout (psia) 26 26
Heat rate into tank skin (Btu/hr/ft?) 7-36 4-TBD

RESIDUAL PROPELLANTS OF ORBITER B
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Thruster Location Thrust Vector i
‘ (in.) Direction Cosine %
Thruster X Y Z hN Y Z ;
-X Translation -337 +55 +300 -0.940 -0. 342 0 g
-X Translation -337 -55 +300 -0.940 | +0, 342 0 j
Yaw -651 +97 +406 0 -1 0 '
Yaw -651 -97 | +406 0 +1 0 E
Yaw -651 | +135 | +218 0 -1 0 |
Yaw -651 -135 +218 0 +1 0
Pitch - ~651 +56 | +442 0 0 -4
Pitch -651 -56 +442 0 0 -1
Pitch -651 +135 +186 0 -0.707 +0.707 2
Pitch -651 | -135 | +186 0 +0.707 | +0.707 |
Roll -1429 +693 +228 0 0 -1
Roll -1429 -693 +204 0 0 +1
Roll ~1450 | +693 | +204 0 0 +1
Roll -1450 -693 +228 0 0 -1
Yaw -1865 +92 +444 0 -1 0
Yaw -1865 -92 +444 0 +1 0
Yaw -1865 +112 +192 0 -1 0
Yaw -1865 -112 +192 0 +1 0
Pitch -1865 +350 +485 0 0 -1
Pitch -1865 -50 +485 0 0 -1
Pitch -1865 +112 +160 0 -0.707 +0. 707
Pitch -1865 -112 +160 0 +0. 707 +0. 707
+X Translation -2102 +45 +364 1 0 0
+X Translation -2102 +63 +364 1 0 0
+X Translation -2102 -45 +364 1 0 0
+X Translation -2102 -63 +364 1 0 0
AUXILIARY PROPULSION SUBSYSTEM THRUSTER
LOCATIONS, ORBITER B FIGURE F-19
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