698 research outputs found

    Erythrocytes and Vascular Function: Oxygen and Nitric Oxide

    Get PDF
    Erythrocytes regulate vascular function through the modulation of oxygen delivery and the scavenging and generation of nitric oxide (NO). First, hemoglobin inside the red blood cell binds oxygen in the lungs and delivers it to tissues throughout the body in an allosterically regulated process, modulated by oxygen, carbon dioxide and proton concentrations. The vasculature responds to low oxygen tensions through vasodilation, further recruiting blood flow and oxygen carrying erythrocytes. Research has shown multiple mechanisms are at play in this classical hypoxic vasodilatory response, with a potential role of red cell derived vasodilatory molecules, such as nitrite derived nitric oxide and red blood cell ATP, considered in the last 20 years. According to these hypotheses, red blood cells release vasodilatory molecules under low oxygen pressures. Candidate molecules released by erythrocytes and responsible for hypoxic vasodilation are nitric oxide, adenosine triphosphate and S-nitrosothiols. Our research group has characterized the biochemistry and physiological effects of the electron and proton transfer reactions from hemoglobin and other ferrous heme globins with nitrite to form NO. In addition to NO generation from nitrite during deoxygenation, hemoglobin has a high affinity for NO. Scavenging of NO by hemoglobin can cause vasoconstriction, which is greatly enhanced by cell free hemoglobin outside of the red cell. Therefore, compartmentalization of hemoglobin inside red blood cells and localization of red blood cells in the blood stream are important for healthy vascular function. Conditions where erythrocyte lysis leads to cell free hemoglobin or where erythrocytes adhere to the endothelium can result in hypertension and vaso constriction. These studies support a model where hemoglobin serves as an oxido-reductase, inhibiting NO and promoting higher vessel tone when oxygenated and reducing nitrite to form NO and vasodilate when deoxygenated. How erythrocytes modulate vascular tone has been widely studied over the last two decades. The vasodilation of the vasculature under hypoxic conditions has inspired much research ranging from the effect of oxygen partial pressure on smooth muscle cell contractility and endothelial nitric oxide synthase (eNOS) activity to nitrite reduction by hemoglobin (Hb) inside erythrocytes and subsequent production of nitric oxide. Here we review how red blood cells (RBCs) and hemoglobin regulate vascular function and blood flow

    Collinear mecanum drive: modelling, analysis, partial feedback linearisation, and nonlinear control

    Get PDF
    The Collinear Mecanum Drive (CMD) is a novel robot locomotion system, capable of generating omnidirectional motion whilst simultaneously dynamically balancing, achieved using a collinear arrangement of three or more Mecanum wheels. The CMD has a significantly thinner ground footprint than existing omnidirectional locomotion methods, which does not need to be enlarged with increasing robot height as to avoid toppling during acceleration or external disturbance. This combination of omnidirectional manoeuvrability and a thin ground footprint allows for the creation of tall robots that are able to navigate through much narrower gaps between obstacles than existing omnidirectional locomotion methods. This allows for greater manoeuvrability in confined and cluttered environments, such as that encountered in the personal service and automated warehousing robotics sectors. This article derives the kinematics and dynamics models of the CMD, analyses controllability and accessibility, and determines the degree to which a CMD can be linearised by feedback. A partial feedback linearisation is then performed, and three practically useful nonlinear controllers are derived using a backstepping design approach, all with convergence and stability guarantees for the fully-coupled nonlinear model. These are demonstrated both in simulation and on a real-world CMD experimental prototype

    Borehole tensor strain measurements in California ( USA)

    Get PDF
    Two continuous borehole plane strain monitoring sites have been operational in California since late 1983, using borehole tensor strain monitors implanted at a depth of 150 m. Shear strain data at subtidal sensitivies were available immediately after installation without contamination by bond curing or thermal recovery signals. At Pinon Flat Observatory, data indicate a constant shear strain accumulation of 0.6 microstrain per annum with the axis of maximum compression oriented 50o + or - 5o W of N. This result differs significantly from regional geodetic estimates, the amplitude being dominated by continued visoelastic response of the hole. Preliminary analysis of strain steps observed at San Juan Bautista during the Morgan Hill earthquake of April 24, 1984 show good agreement with calculations from seismically determined source parameters for this event. -from Author

    Experimental intravascular hemolysis induces hemodynamic and pathological pulmonary hypertension: association with accelerated purine metabolism

    Get PDF
    Pulmonary hypertension (PH) is emerging as a serious complication associated with hemolytic disorders, and plexiform lesions (PXL) have been reported in patients with sickle cell disease (SCD). We hypothesized that repetitive hemolysis per se induces PH and angioproliferative vasculopathy and evaluated a new mechanism for hemolysis-associated PH (HA-PH) that involves the release of adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP) from erythrocytes. In healthy rats, repetitive admin- istration of hemolyzed autologous blood (HAB) for 10 days produced reversible pulmonary parenchymal injury and vascular remodeling and PH. Moreover, the combination of a single dose of Sugen-5416 (SU, 200mg/kg) and 10-day HAB treatment resulted in severe and progressive obliterative PH and formation of PXL (Day 26, right ventricular peak systolic pressure (mmHg): 26.1 1.1, 41.5 0.5 and 85.1 5.9 in untreated, HAB treated and SUĂľHAB treated rats, respectively). In rats, repeti- tive administration of HAB increased plasma ADA activity and reduced urinary adenosine levels. Similarly, SCD patients had higher plasma ADA and PNP activity and accelerated adenosine, inosine, and guanosine metabolism than healthy controls. Our study provides evidence that hemolysis per se leads to the development of angioproliferative PH. We also report the development of a rat model of HA-PH that closely mimics pulmonary vasculopathy seen in patients with HA-PH. Finally, this study suggests that in hemolytic diseases released ADA and PNP may increase the risk of PH, likely by abolishing the vasoprotective effects of adenosine, inosine and guanosine. Further characterization of this new rat model of hemolysis-induced angioproliferative PH and additional studies of the role of purines metabolism in HA-PH are warranted

    Fatty acid nitroalkenes ameliorate glucose intolerance and pulmonary hypertension in high-fat diet-induced obesity

    Get PDF
    Aims Obesity is a risk factor for diabetes and cardiovascular diseases, with the incidence of these disorders becoming epidemic. Pathogenic responses to obesity have been ascribed to adipose tissue (AT) dysfunction that promotes bioactive mediator secretion from visceral AT and the initiation of pro-inflammatory events that induce oxidative stress and tissue dysfunction. Current understanding supports that suppressing pro-inflammatory and oxidative events promotes improved metabolic and cardiovascular function. In this regard, electrophilic nitro-fatty acids display pleiotropic anti-inflammatory signalling actions. Methods and results It was hypothesized that high-fat diet (HFD)-induced inflammatory and metabolic responses, manifested by loss of glucose tolerance and vascular dysfunction, would be attenuated by systemic administration of nitrooctadecenoic acid (OA-NO2). Male C57BL/6j mice subjected to a HFD for 20 weeks displayed increased adiposity, fasting glucose, and insulin levels, which led to glucose intolerance and pulmonary hypertension, characterized by increased right ventricular (RV) end-systolic pressure (RVESP) and pulmonary vascular resistance (PVR). This was associated with increased lung xanthine oxidoreductase (XO) activity, macrophage infiltration, and enhanced expression of pro-inflammatory cytokines. Left ventricular (LV) end-diastolic pressure remained unaltered, indicating that the HFD produces pulmonary vascular remodelling, rather than LV dysfunction and pulmonary venous hypertension. Administration of OA-NO2 for the final 6.5 weeks of HFD improved glucose tolerance and significantly attenuated HFD-induced RVESP, PVR, RV hypertrophy, lung XO activity, oxidative stress, and pro-inflammatory pulmonary cytokine levels. Conclusions These observations support that the pleiotropic signalling actions of electrophilic fatty acids represent a therapeutic strategy for limiting the complex pathogenic responses instigated by obesity.Fil: Kelley, Eric E.. University of Pittsburgh; Estados UnidosFil: Baust, Jeff. University of Pittsburgh; Estados UnidosFil: Bonacci, Gustavo Roberto. University of Pittsburgh; Estados Unidos. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico CĂłrdoba. Centro de Investigaciones en BioquĂ­mica ClĂ­nica e InmunologĂ­a; ArgentinaFil: Golin Bisello, Franca. University of Pittsburgh; Estados UnidosFil: Devlin, Jason E.. University of Pittsburgh; Estados UnidosFil: Croix, Claudette M. St.. University of Pittsburgh; Estados UnidosFil: Watkins, Simon C.. University of Pittsburgh; Estados UnidosFil: Gor, Sonia. University of Pittsburgh; Estados UnidosFil: Cantu Medellin, Nadiezhda. University of Pittsburgh; Estados UnidosFil: Weidert, Eric R.. University of Pittsburgh; Estados UnidosFil: Frisbee,Jefferson C.. University of Virginia; Estados UnidosFil: Gladwin, Mark T.. University of Pittsburgh; Estados UnidosFil: Champion, Hunter C.. University of Pittsburgh; Estados UnidosFil: Freeman, Bruce A.. University of Pittsburgh; Estados UnidosFil: Khoo, Nicholas K.H.. University of Pittsburgh; Estados Unido

    Mechanisms of Hemolysis-Associated Platelet Activation

    Get PDF
    Background Intravascular hemolysis occurs after blood transfusion, in hemolytic anemias, and in other conditions, and is associated with hypercoagulable states. Hemolysis has been shown to potently activate platelets in vitro and in vivo, and several mechanisms have been suggested to account for this, including: (i) direct activation by hemoglobin (Hb); (ii) increase in reactive oxygen species (ROS); (iii) scavenging of nitric oxide (NO) by released Hb; and (iv) release of intraerythrocytic ADP. Objective To elucidate the mechanism of hemolysis-mediated platelet activation. Methods We used flow cytometry to detect PAC-1 binding to activated platelets for in vitro experiments, and a Siemens\u27 Advia 120 hematology system to assess platelet aggregation by using platelet counts from in vivo experiments in a rodent model. Results We found that Hb did not directly activate platelets. However, ADP bound to Hb could cause platelet activation. Furthermore, platelet activation caused by shearing of red blood cells (RBCs) was reduced in the presence of apyrase, which metabolizes ADP to AMP. The use of ROS scavengers did not affect platelet activation. We also found that cell-free Hb enhanced platelet activation by abrogating the inhibitory effect of NO on platelet activation. In vivo infusions of ADP and purified (ADP-free) Hb, as well as hemolysate, resulted in platelet aggregation, as shown by decreased platelet counts. Conclusion Two primary mechanisms account for RBC hemolysis-associated platelet activation: ADP release, which activates platelets; and cell-free Hb release, which enhances platelet activation by lowering NO bioavailability

    A novel genetic programming approach to the design of engine control systems for the voltage stabilisation of hybrid electric vehicle generator outputs

    No full text
    This paper describes a Genetic Programming based automatic design methodology applied to the maintenance of a stable generated electrical output from a series-hybrid vehi- cle generator set. The generator set comprises a 3-phase AC generator whose output is subsequently rectified to DC.The engine/generator combination receives its control input via an electronically actuated throttle, whose control integration is made more complex due to the significant system time delay. This time delay problem is usually addressed by model predictive design methods, which add computational complexity and rely as a necessity on accurate system and delay models. In order to eliminate this reliance, and achieve stable operation with disturbance rejection, a controller is designed via a Genetic Programming framework implemented directly in Matlab, and particularly, Simulink. the principal objective is to obtain a relatively simple controller for the time-delay system which doesn’t rely on computationally expensive structures, yet retains inherent disturabance rejection properties. A methodology is presented to automatically design control systems directly upon the block libraries available in Simulink to automatically evolve robust control structures

    Neither a Nitric Oxide Donor Nor Potassium Channel Blockage Inhibit RBC Mechanical Damage Induced by a Roller Pump

    Get PDF
    Red blood cells (RBC) are exposed to various levels of shear stresses when they are exposed to artificial flow environments, such as extracorporeal flow circuits and hemodialysis equipment. This mechanical trauma affects RBC and the resulting effect is determined by the magnitude of shear forces and exposure time. It has been previously demonstrated that nitric oxide (NO) donors and potassium channel blockers could prevent the sub-hemolytic damage to RBC, when they are exposed to 120 Pa shear stress in a Couette shearing system. This study aimed at testing the effectiveness of NO donor sodium nitroprussid (SNP, 10-4 M) and non-specific potassium channel blocker tetraethylammonium (TEA, 10-7 M) in preventing the mechanical damage to RBC in a simple flow system including a roller pump and a glass capillary of 0.12 cm diameter. RBC suspensions were pumped through the capillary by the roller pump at a flow rate that maintains 200 mmHg hydrostatic pressure at the entrance of the capillary. An aliquot of 10 ml of RBC suspension of 0.4 L/L hematocrit was re-circulated through the capillary for 30 minutes. Plasma hemoglobin concentrations were found to be significantly increased (~7 folds compared to control aliquot which was not pumped through the system) and neither SNP nor TEA prevented this hemolysis. Alternatively, RBC deformability assessed by laser diffraction ektacytometry was not altered after 30 min of pumping and both SNP and TEA had no effect on this parameter. The results of this study indicated that, in contrast with the findings in RBC exposed to a well-defined magnitude of shear stress in a Couette shearing system, the mechanical damage induced by a roller pump could not be prevented by NO donor or potassium channel blocker
    • …
    corecore