1,219 research outputs found
The Evolving Activity of the Dynamically Young Comet C/2009 P1 (Garradd)
We used the UltraViolet-Optical Telescope on board Swift to observe the
dynamically young comet C/2009 P1 (Garradd) from a heliocentric distance of 3.5
AU pre-perihelion until 4.0 AU outbound. At 3.5 AU pre-perihelion, comet
Garradd had one of the highest dust-to-gas ratios ever observed, matched only
by comet Hale-Bopp. The evolving morphology of the dust in its coma suggests an
outburst that ended around 2.2 AU pre-perihelion. Comparing slit-based
measurements and observations acquired with larger fields of view indicated
that between 3 AU and 2 AU pre-perihelion a significant extended source started
producing water in the coma. We demonstrate that this source, which could be
due to icy grains, disappeared quickly around perihelion. Water production by
the nucleus may be attributed to a constantly active source of at least 75
km, estimated to be more than 20 percent of the surface. Based on our
measurements, the comet lost kg of ice and dust during this
apparition, corresponding to at most a few meters of its surface.Even though
this was likely not Garradd's first passage through the inner solar system, the
activity of the comet was complex and changed significantly during the time it
was observed
Orientale and South Pole-Aitken basins on the Moon: Preliminary Galileo imaging results
During the Earth-Moon flyby the Galileo Solid State Imaging System obtained new information on the landscape and physical geology of the Moon. Multicolor Galileo images of the Moon reveal variations in color properties of the lunar surface. Using returned lunar samples as a key, the color differences can be interpreted in terms of variations in the mineral makeup of the lunar rocks and soil. The combined results of Apollo landings and multicolor images from Galileo allow extrapolation of surface composition to areas distant from the landing sites, including the far side invisible from Earth
Chromatin status and transcription factor binding to gonadotropin promoters in gonadotrope cell lines.
BackgroundProper expression of key reproductive hormones from gonadotrope cells of the pituitary is required for pubertal onset and reproduction. To further our understanding of the molecular events taking place during embryonic development, leading to expression of the glycoproteins luteinizing hormone (LH) and follicle-stimulating hormone (FSH), we characterized chromatin structure changes, imparted mainly by histone modifications, in model gonadotrope cell lines.MethodsWe evaluated chromatin status and gene expression profiles by chromatin immunoprecipitation assays, DNase sensitivity assay, and RNA sequencing in three developmentally staged gonadotrope cell lines, αT1-1 (progenitor, expressing Cga), αT3-1 (immature, expressing Cga and Gnrhr), and LβT2 (mature, expressing Cga, Gnrhr, Lhb, and Fshb), to assess changes in chromatin status and transcription factor access of gonadotrope-specific genes.ResultsWe found the common mRNA α-subunit of LH and FSH, called Cga, to have an open chromatin conformation in all three cell lines. In contrast, chromatin status of Gnrhr is open only in αT3-1 and LβT2 cells. Lhb begins to open in LβT2 cells and was further opened by activin treatment. Histone H3 modifications associated with active chromatin were high on Gnrhr in αT3-1 and LβT2, and Lhb in LβT2 cells, while H3 modifications associated with repressed chromatin were low on Gnrhr, Lhb, and Fshb in LβT2 cells. Finally, chromatin status correlates with the progressive access of LHX3 to Cga and Gnrhr, followed by PITX1 binding to the Lhb promoter.ConclusionOur data show the gonadotrope-specific genes Cga, Gnrhr, Lhb, and Fshb are not only controlled by developmental transcription factors, but also by epigenetic mechanisms that include the modulation of chromatin structure, and histone modifications
Possible spinel absorption bands in S-asteroid visible reflectance spectra
Minor absorption bands in the 0.55 to 0.7 micron wavelength range of reflectance spectra of 10 S asteroids have been found and compared with those of spinel-group minerals using the modified Gaussian model. Most of these S asteroids are consistently shown to have two absorption bands around 0.6 and 0.67 micron. Of the spinel-group minerals examined in this study, the 0.6 and 0.67 micron bands are most consistent with those seen in chromite. Recently, the existence of spinels has also been detected from the absorption-band features around 1 and 2 micron of two S-asteroid reflectance spectra, and chromite has been found in a primitive achondrite as its major phase. These new findings suggest a possible common existence of spinel-group minerals in the solar system
Deriving asteroid mineralogies from reflectance spectra: Implications for the MUSES-C target asteroid
In an effort to both bolster the spectral database on ordinary chondrites and constrain our ability to deconvolve modal, mineral chemistry and bulk chemical composition information from ordinary chondrites, we have initiated a spectral study of samples with known bulk compositions from the Smithsonian Institution\u27s Analyzed Meteorite Powder collection. In this paper, we focus on deriving a better formula for determining asteroid mineralogies from reflectance spectra. The MUSES-C mission to asteroid 25143 1998 SF36 will allow any derived mineralogies to be tested with a returned sample
Recommended from our members
Modest Declines in Proteome Quality Impair Hematopoietic Stem Cell Self-Renewal.
Low protein synthesis is a feature of somatic stem cells that promotes regeneration in multiple tissues. Modest increases in protein synthesis impair stem cell function, but the mechanisms by which this occurs are largely unknown. We determine that low protein synthesis within hematopoietic stem cells (HSCs) is associated with elevated proteome quality in vivo. HSCs contain less misfolded and unfolded proteins than myeloid progenitors. Increases in protein synthesis cause HSCs to accumulate misfolded and unfolded proteins. To test how proteome quality affects HSCs, we examine Aarssti/sti mice that harbor a tRNA editing defect that increases amino acid misincorporation. Aarssti/sti mice exhibit reduced HSC numbers, increased proliferation, and diminished serial reconstituting activity. Misfolded proteins overwhelm the proteasome within Aarssti/sti HSCs, which is associated with increased c-Myc abundance. Deletion of one Myc allele partially rescues serial reconstitution defects in Aarssti/sti HSCs. Thus, HSCs are dependent on low protein synthesis to maintain proteostasis, which promotes their self-renewal
Water Ice and Dust in the Innermost Coma of Comet 103P/Hartley 2
On November 4th, 2010, the Deep Impact eXtended Investigation (DIXI)
successfully encountered comet 103P/Hartley 2, when it was at a heliocentric
distance of 1.06 AU. Spatially resolved near-IR spectra of comet Hartley 2 were
acquired in the 1.05-4.83 micron wavelength range using the HRI-IR
spectrometer. We present spectral maps of the inner ~10 kilometers of the coma
collected 7 minutes and 23 minutes after closest approach. The extracted
reflectance spectra include well-defined absorption bands near 1.5, 2.0, and
3.0 micron consistent in position, bandwidth, and shape with the presence of
water ice grains. Using Hapke's radiative transfer model, we characterize the
type of mixing (areal vs. intimate), relative abundance, grain size, and
spatial distribution of water ice and refractories. Our modeling suggests that
the dust, which dominates the innermost coma of Hartley 2 and is at a
temperature of 300K, is thermally and physically decoupled from the
fine-grained water ice particles, which are on the order of 1 micron in size.
The strong correlation between the water ice, dust, and CO2 spatial
distribution supports the concept that CO2 gas drags the water ice and dust
grains from the nucleus. Once in the coma, the water ice begins subliming while
the dust is in a constant outflow. The derived water ice scale-length is
compatible with the lifetimes expected for 1-micron pure water ice grains at 1
AU, if velocities are near 0.5 m/s. Such velocities, about three order of
magnitudes lower than the expansion velocities expected for isolated 1-micron
water ice particles [Hanner, 1981; Whipple, 1951], suggest that the observed
water ice grains are likely aggregates.Comment: 51 pages, 12 figures, accepted for publication in Icaru
Generating Plausible Individual Agent Movements From Spatio-Temporal Occupancy Data
We introduce the Spatio-Temporal Agent Motion Model, a datadriven representation of the behavior and motion of individuals within a space over the course of a day. We explore different representations for this model, incorporating different modes of individual behavior, and describe how crowd simulations can use this model as source material for dynamic and realistic behaviors
- …