134 research outputs found

    ZIP8 Zinc Transporter: Indispensable Role for Both Multiple-Organ Organogenesis and Hematopoiesis In Utero

    Get PDF
    Previously this laboratory characterized Slc39a8-encoded ZIP8 as a Zn2+/(HCO3–)2 symporter; yet, the overall physiological importance of ZIP8 at the whole-organism level remains unclear. Herein we describe the phenotype of the hypomorphic Slc39a8(neo/neo) mouse which has retained the neomycin-resistance gene in intron 3, hence causing significantly decreased ZIP8 mRNA and protein levels in embryo, fetus, placenta, yolk sac, and several tissues of neonates. The Slc39a8(neo) allele is associated with diminished zinc and iron uptake in mouse fetal fibroblast and liver-derived cultures; consequently, Slc39a8(neo/neo) newborns exhibit diminished zinc and iron levels in several tissues. Slc39a8(neo/neo) homozygotes from gestational day(GD)-11.5 onward are pale, growth-stunted, and die between GD18.5 and 48 h postnatally. Defects include: severely hypoplastic spleen; hypoplasia of liver, kidney, lung, and lower limbs. Histologically, Slc39a8(neo/neo) neonates show decreased numbers of hematopoietic islands in yolk sac and liver. Low hemoglobin, hematocrit, red cell count, serum iron, and total iron-binding capacity confirmed severe anemia. Flow cytometry of fetal liver cells revealed the erythroid series strikingly affected in the hypomorph. Zinc-dependent 5-aminolevulinic acid dehydratase, required for heme synthesis, was not different between Slc39a8(+/+) and Slc39a8(neo/neo) offspring. To demonstrate further that the mouse phenotype is due to ZIP8 deficiency, we bred Slc39a8(+/neo) with BAC-transgenic BTZIP8-3 line (carrying three extra copies of the Slc39a8 allele); this cross generated viable Slc39a8(neo/neo)_BTZIP8-3(+/+) pups showing none of the above-mentioned congenital defects–proving Slc39a8(neo/neo) causes the described phenotype. Our study demonstrates that ZIP8-mediated zinc transport plays an unappreciated critical role during in utero and neonatal growth, organ morphogenesis, and hematopoiesis

    Stir bar-sorptive extraction, solid phase extraction and liquid-liquid extraction for levetiracetam determination in human plasma: comparing recovery rates

    Get PDF
    Levetiracetam (LEV), an antiepileptic drug (AED) with favorable pharmacokinetic profile, is increasingly being used in clinical practice, although information on its metabolism and disposition are still being generated. Therefore a simple, robust and fast liquid-liquid extraction (LLE) followed by high-performance liquid chromatography method is described that could be used for both pharmacokinetic and therapeutic drug monitoring (TDM) purposes. Moreover, recovery rates of LEV in plasma were compared among LLE, stir bar-sorptive extraction (SBSE), and solid-phase extraction (SPE). Solvent extraction with dichloromethane yielded a plasma residue free from usual interferences such as commonly co-prescribed AEDs, and recoveries around 90% (LLE), 60% (SPE) and 10% (SBSE). Separation was obtained using reverse phase Select B column with ultraviolet detection (235 nm). Mobile phase consisted of methanol:sodium acetate buffer 0.125 M pH 4.4 (20:80, v/v). The method was linear over a range of 2.8-220.0 µg mL-1. The intra- and inter-assay precision and accuracy were studied at three concentrations; relative standard deviation was less than 10%. The limit of quantification was 2.8 µg mL-1. This robust method was successfully applied to analyze plasma samples from patients with epilepsy and therefore might be used for pharmacokinetic and TDM purposes.</p

    Defence mechanisms of olfactory neuro-epithelium: mucosa regeneration, metabolising enzymes and transporters

    No full text
    Defence mechanisms of olfactory neuro-epithelium: mucosa regeneration, metabolising enzymes and transporters. The olfactory neuro-epithelium is highly sensitive to chemicals and its direct microbiological environment. It also plays a role as an interface between the airways and the nervous system, and so it has developed several defence instruments for rapid regeneration or for the detoxification of the immediate environment. This review illustrates three of these defence mechanisms: regeneration of the epithelium, local production of metabolising enzymes and xenobiotic transporters. Toxicants can inflict damage by a direct toxic response. Alternatively, they may require metabolic activation to produce the proximate toxicant. In addition to detoxifying inhaled and systemically derived xenobiotics, the local olfactory metabolism may fulfil multiple functions such as the modification of inhaled odorant, the modulation of endogenous signalling molecules and the protection of other tissues such as the CNS and lungs from inhaled toxicants. Finally, the permeability of nasal and olfactory mucosa is an important efficacy parameter for some anti-allergic drugs delivered by intranasal administration or inhalation. Efflux or update transporters expressed in these tissues may therefore significantly influence the pharmacokinetics of drugs administered topically

    Pharmacokinetic and pharmacodynamic studies following single and multiple doses of rolafagrel, a novel inhibitor of thromboxane synthase, in normal volunteers

    No full text
    The pharmacokinetics and pharmacodynamics of rolafagrel (FCE 22178), a novel thromboxane synthase inhibitor, were evaluated after single and multiple oral doses in eight healthy volunteers. After a single dose (400 mg), the drug was absorbed rapidly, peak plasma concentrations being attained within 2 h in all subjects. Elimination followed a biphasic course, with a rapid initial decline followed after 12-24 h by a late phase with a terminal half-life of about 10 h. About 100% of the administered dose could be recovered in urine within 72 h, mostly in conjugated form. During multiple dosing (400 mg t.i.d. for 5 days), steady-state conditions were approached on day 2 and AUC values over a dosing interval were similar to those observed after a single dose (72.3 vs 76.3 micrograms.ml-1.h). Pharmacokinetic parameters calculated after multiple doses were similar to those observed after a single dose (Cmax: 20.1 vs 18.2 micrograms.ml-1; tmax: 1.2 vs 1.1 h; terminal half-life: 10.9 vs 11.4 h; CL: 85.2 vs 70.4 ml.h-1.kg-1; V: 1.23 vs 1.24 l.kg-1). Platelet generation of thromboxane B2, the stable breakdown product of thromboxane A2, was inhibited by 85% at a plasma rolafagrel concentration of about 4 micrograms.ml-1, and only a small increase in inhibition was observed at higher concentrations
    • …
    corecore