421 research outputs found

    R-Symmetry and the Topological Twist of N=2 Effective Supergravities of Heterotic Strings

    Get PDF
    We discuss R-symmetries in locally supersymmetric N=2 gauge theories coupled to hypermultiplets which can be thought of as effective theories of heterotic superstring models. In this type of supergravities a suitable R-symmetry exists and can be used to topologically twist the theory: the vector multiplet containing the dilaton-axion field has different R-charge assignments with respect to the other vector multiplets. Correspondingly a system of coupled instanton equations emerges, mixing gravitational and Yang--Mills instantons with triholomorphic hyperinstantons and axion-instantons. For the tree-level classical special manifolds ST(n)=SU(1,1)/U(1)×SO(2,n)/(SO(2)ST(n)=SU(1,1)/U(1)\times SO(2,n)/(SO(2) ×SO(n))\times SO(n)) R-symmetry with the specified properties is a continuous symmetry, but for the quantum corrected manifolds ST^(n){\hat {ST}}(n) a discrete R--group of electric--magnetic duality rotations is sufficient and we argue that it exists.Comment: 40 pages, plain LaTeX. Final version to appear on IJMP

    Axitinib induces DNA damage response leading to senescence, mitotic catastrophe, and increased NK cell recognition in human renal carcinoma cells.

    Get PDF
    Tyrosine kinase inhibitors (TKIs) including axitinib have been introduced in the treatment of renal cell carcinoma (RCC) because of their anti-angiogenic properties. However, no evidence are presently available on a direct cytotoxic anti-tumor activity of axitinib in RCC.Herein we reported by western blot analysis that axitinib treatment induces a DNA damage response (DDR) initially characterized by γ-H2AX phosphorylation and Chk1 kinase activation and at later time points by p21 overexpression in A-498 and Caki-2 RCC cells although with a different potency. Analysis by immunocytochemistry for the presence of 8-oxo-7,8-dihydro-2'-deoxyguanosine in cellular DNA and flow cytometry using the redox-sensitive fluorescent dye DCFDA, demonstrated that DDR response is accompanied by the presence of oxidative DNA damage and reactive oxygen species (ROS) generation. This response leads to G2/M cell cycle arrest and induces a senescent-like phenotype accompanied by enlargement of cells and increased senescence-associated β-galactosidase activity, which are abrogated by N-acetyl cysteine (NAC) pre-treatment. In addition, axitinib-treated cells undergo to cell death through mitotic catastrophe characterized by micronucleation and abnormal microtubule assembly as assessed by fluorescence microscopy.On the other hand, axitinib, through the DDR induction, is also able to increase the surface NKG2D ligand expression. Accordingly, drug treatment promotes NK cell recognition and degranulation in A-498 RCC cells in a ROS-dependent manner.Collectively, our results indicate that both cytotoxic and immunomodulatory effects on RCC cells can contribute to axitinib anti-tumor activity

    Modulation of the UVA activation of haem oxygenase, collagenase and cyclooxygenase gene expression by epigallocatechin in human skin cells

    Get PDF
    AbstractWe have investigated the modifying effects of epigallocatechin, a major polyphenolic constituent of green tea, on ultraviolet-A-activated gene expression in human fibroblasts and keratinocytes using the stress responsive enzymes: haem oxygenase-1, interstitial collagenase and cyclooxygenase-2. Although epigallocatechin strongly reduced ultraviolet-A-induced haem oxygenase-1 activation in skin-derived fibroblasts, the same compound activated collagenase and cyclooxygenase expression. In a keratinocyte cell line, ultraviolet-A-mediated haem oxygenase-1 over-expression was low and epigallocatechin failed to modulate it further. In contrast to the results with fibroblasts, ultraviolet-A activation of cyclooxygenase in keratinocytes was reduced by epigallocatechin. The results indicate that the effect of this green tea polyphenol on cellular stress responses is complex and may involve direct effects on signal transduction as well as changes that may be associated with its antioxidant activity

    TREM1/3 deficiency impairs tissue repair after acute kidney injury and mitochondrial metabolic flexibility in tubular epithelial cells

    Get PDF
    Long-term sequelae of acute kidney injury (AKI) are associated with incomplete recovery of renal function and the development of chronic kidney disease (CKD), which can be mediated by aberrant innate immune activation, mitochondrial pathology, and accumulation of senescent tubular epithelial cells (TECs). Herein, we show that the innate immune receptor Triggering receptor expressed on myeloid cells-1 (TREM-1) links mitochondrial metabolism to tubular epithelial senescence. TREM-1 is expressed by inflammatory and epithelial cells, both players in renal repair after ischemia/reperfusion (IR)-induced AKI. Hence, we subjected WT and TREM1/3 KO mice to different models of renal IR. TREM1/3 KO mice displayed no major differences during the acute phase of injury, but increased mortality was observed in the recovery phase. This detrimental effect was associated with maladaptive repair, characterized by persistent tubular damage, inflammation, fibrosis, and TEC senescence. In vitro, we observed an altered mitochondrial homeostasis and cellular metabolism in TREM1/3 KO primary TECs. This was associated with G2/M arrest and increased ROS accumulation. Further exposure of cells to ROS-generating triggers drove the cells into a stress-induced senescent state, resulting in decreased wound healing capacity. Treatment with a mitochondria anti-oxidant partly prevented the senescent phenotype, suggesting a role for mitochondria herein. In summary, we have unraveled a novel (metabolic) mechanism by which TREM1/3 deficiency drives senescence in TECs. This involves redox imbalance, mitochondrial dysfunction and a decline in cellular metabolic activities. These finding suggest a novel role for TREM-1 in maintaining tubular homeostasis through regulation of mitochondrial metabolic flexibility

    A reliable measure of similarity based on dependency for short time series: an application to gene expression networks

    Get PDF
    Abstract Background Microarray techniques have become an important tool to the investigation of genetic relationships and the assignment of different phenotypes. Since microarrays are still very expensive, most of the experiments are performed with small samples. This paper introduces a method to quantify dependency between data series composed of few sample points. The method is used to construct gene co-expression subnetworks of highly significant edges. Results The results shown here are for an adapted subset of aSaccharomyces cerevisiaegene expression data set with low temporal resolution and poor statistics. The method reveals common transcription factors with a high confidence level and allows the construction of subnetworks with high biological relevance that reveals characteristic features of the processes driving the organism adaptations to specific environmental conditions. Conclusion Our method allows a reliable and sophisticated analysis of microarray data even under severe constraints. The utilization of systems biology improves the biologists ability to elucidate the mechanisms underlying celular processes and to formulate new hypotheses

    Structural and biochemical characterization of NarE, an iron-containing ADP-ribosyltransferase from Neisseria meningitidis.

    Get PDF
    Abstract NarE is a 16 kDa protein identified from Neisseria meningitidis, one of the bacterial pathogens responsible for meningitis. NarE belongs to the family of ADP-ribosyltransferases (ADPRT) and catalyzes the transfer of ADP-ribose moieties to arginine residues in target protein acceptors. Many pathogenic bacteria utilize ADP-ribosylating toxins to modify and alter essential functions of eukaryotic cells. NarE is further the first ADPRT which could be shown to bind iron through a Fe-S center, which is crucial for the catalytic activity. Here we present the NMR solution structure of NarE, which shows structural homology to other ADPRTs. Using NMR titration experiments we could identify from Chemical Shift Perturbation data both the NAD binding site, which is in perfect agreement with a consensus sequence analysis between different ADPRTs, as well as the iron coordination site, which consists of 2 cysteines and 2 histidines. This atypical iron coordination is also capable to bind zinc. These results could be fortified by site-directed mutagenesis of the catalytic region, which identified two functionally crucial residues. We could further identify a main interaction region of NarE with antibodies using two complementary methods based on antibody immobilization, proteolytic digestion, and mass spectrometry. This study combines structural and functional features of NarE providing for the first time a characterization of an iron-dependent ADPRT

    Identification of possible targets of the Aspergillus fumigatus CRZ1 homologue, CrzA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Calcineurin, a serine/threonine-specific protein phosphatase, plays an important role in the control of cell morphology and virulence in fungi. Calcineurin regulates localization and activity of a transcription factor called CRZ1. Recently, we characterize <it>Aspergillus fumigatus CRZ1 </it>homologue, AfCrzA. Here, we investigate which pathways are influenced by <it>A. fumigatus </it>AfCrzA during a short pulse of calcium by comparatively determining the transcriptional profile of <it>A. fumigatus </it>wild type and <it>ΔAfcrzA </it>mutant strains.</p> <p>Results</p> <p>We were able to observe 3,622 genes modulated in at least one timepoint in the mutant when compared to the wild type strain (3,211 and 411 at 10 and 30 minutes, respectively). Decreased mRNA abundance in the <it>ΔcrzA </it>was seen for genes encoding calcium transporters, transcription factors and genes that could be directly or indirectly involved in calcium metabolism. Increased mRNA accumulation was observed for some genes encoding proteins involved in stress response. AfCrzA overexpression in <it>A. fumigatus </it>increases the expression of several of these genes. The deleted strain of one of these genes, AfRcnA, belonging to a class of endogenous calcineurin regulators, calcipressins, had more calcineurin activity after exposure to calcium and was less sensitive to menadione 30 μM, hydrogen peroxide 2.5 mM, EGTA 25 mM, and MnCl<sub>2 </sub>25 mM. We constructed deletion, overexpression, and GFP fusion protein for the closely related <it>A. nidulans </it>AnRcnA. GFP::RcnA was mostly detected along the germling, did not accumulate in the nuclei and its location is not affected by the cellular response to calcium chloride.</p> <p>Conclusion</p> <p>We have performed a transcriptional profiling analysis of the <it>A. fumigatus ΔAfcrzA </it>mutant strain exposed to calcium stress. This provided an excellent opportunity to identify genes and pathways that are under the influence of AfCrzA. AfRcnA, one of these selected genes, encodes a modulator of calcineurin activity. Concomitantly with <it>A. fumigatus AfrcnA </it>molecular analysis, we decided to exploit the conserved features of <it>A. nidulans </it>calcineurin system and investigated the <it>A. nidulans </it>AnRcnA homologue. <it>A. nidulans </it>AnRcnA mutation is suppressing CnaA mutation and it is responsible for modulating the calcineurin activity and mRNA accumulation of genes encoding calcium transporters.</p

    A Search for Non-Perturbative Dualities of Local N=2N=2 Yang--Mills Theories from Calabi--Yau Threefolds

    Get PDF
    The generalisation of the rigid special geometry of the vector multiplet quantum moduli space to the case of supergravity is discussed through the notion of a dynamical Calabi--Yau threefold. Duality symmetries of this manifold are connected with the analogous dualities associated with the dynamical Riemann surface of the rigid theory. N=2 rigid gauge theories are reviewed in a framework ready for comparison with the local case. As a byproduct we give in general the full duality group (quantum monodromy) for an arbitrary rigid SU(r+1)SU(r+1) gauge theory, extending previous explicit constructions for the r=1,2r=1,2 cases. In the coupling to gravity, R--symmetry and monodromy groups of the dynamical Riemann surface, whose structure we discuss in detail, are embedded into the symplectic duality group ΓD\Gamma_D associated with the moduli space of the dynamical Calabi--Yau threefold.Comment: Latex. Version of previous paper with enlarged and revised appendix 35 pages, plain LaTe

    The MRN complex is transcriptionally regulated by MYCN during neural cell proliferation to control replication stress

    Get PDF
    The MRE11/RAD50/NBS1 (MRN) complex is a major sensor of DNA double strand breaks, whose role in controlling faithful DNA replication and preventing replication stress is also emerging. Inactivation of the MRN complex invariably leads to developmental and/or degenerative neuronal defects, the pathogenesis of which still remains poorly understood. In particular, NBS1 gene mutations are associated with microcephaly and strongly impaired cerebellar development, both in humans and in the mouse model. These phenotypes strikingly overlap those induced by inactivation of MYCN, an essential promoter of the expansion of neuronal stem and progenitor cells, suggesting that MYCN and the MRN complex might be connected on a unique pathway essential for the safe expansion of neuronal cells. Here, we show that MYCN transcriptionally controls the expression of each component of the MRN complex. By genetic and pharmacological inhibition of the MRN complex in a MYCN overexpression model and in the more physiological context of the Hedgehog-dependent expansion of primary cerebellar granule progenitor cells, we also show that the MRN complex is required for MYCN-dependent proliferation. Indeed, its inhibition resulted in DNA damage, activation of a DNA damage response, and cell death in a MYCN- and replication-dependent manner. Our data indicate the MRN complex is essential to restrain MYCN-induced replication stress during neural cell proliferation and support the hypothesis that replication-born DNA damage is responsible for the neuronal defects associated with MRN dysfunctions.Cell Death and Differentiation advance online publication, 12 June 2015; doi:10.1038/cdd.2015.81
    • …
    corecore