46 research outputs found

    Potential effects of the Hawaii Geothermal Project on ground-water resources on the island of Hawaii

    No full text
    "In 1990, the State of Hawaii proposed the Hawaii Geothermal Project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. This report uses data from 31 wells and 8 springs to describe the properties of the ground-water system in and adjacent to the East Rift Zone. Potential effects of this project on ground-water resources are also discussed. Data show differences in ground-water chemistry and heads within the study area that appear to be related to mixing of waters of different origins and ground-water impoundment by volcanic dikes. East of Pahoa, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the pumping of freshwater to support geothermal development in that part of the rift zone would have a minimal effect on ground-water levels. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying sufficient fresh water to support geothermal operations. Contamination of ground-water resources by accidental release of geothermal fluids into shallow aquifers is possible because of corrosive conditions in the geothermal wells, potential well blowouts, and high ground-water velocities in parts of the region. Hydrologic monitoring of water level, temperature, and chemistry in observation wells should continue throughout development of geothermal resources for the Hawaii Geothermal Project for early detection of leakage and migration of geothermal fluids within the groundwater system."Includes bibliographical references (p. 33-35)

    Effects of potential geothermal development in the Corwin Springs Known Geothermal Resources Area, Montana, on the thermal features of Yellowstone National Park /

    No full text
    Shipping list no.: 91-0611-P.Includes bibliographical references.Mode of access: Internet

    That\u27s How the Kangaroo Bounces: A Biological Case Study to Teach Energy Concepts

    No full text
    A growing number of Introductory Physics for Life Sciences courses have been developed to prepare biology, premedicine, and pre-health majors for cross-disciplinary connections between physical principles and biological systems. Many students find it challenging to apply idealized algebra-based general physics to more complex biological systems. A novel biological case study was developed to teach undergraduates to expand their energy transformation analysis of a simple system—a bouncing ball—to a more complex biological system of a kangaroo hopping. Similar to a ball, kangaroos transform elastic potential energy into kinetic energy to power their “bouncing.” Unlike the bouncing ball, kangaroos gain additional potential energy through metabolic processes. Students follow a sequence of guided tutorials that facilitate small-group learning as they evaluate quantitative data from video analysis with metabolic energy expenditures from literature to synthesize a real-world understanding of energy transformations. In this article, we describe learning progressions, practical tips for teaching, and lessons learned in this activity covering energy transformations
    corecore