3,049 research outputs found
Impact of Many-Body Effects on Landau Levels in Graphene
We present magneto-Raman spectroscopy measurements on suspended graphene to
investigate the charge carrier density-dependent electron-electron interaction
in the presence of Landau levels. Utilizing gate-tunable magneto-phonon
resonances, we extract the charge carrier density dependence of the Landau
level transition energies and the associated effective Fermi velocity
. In contrast to the logarithmic divergence of at
zero magnetic field, we find a piecewise linear scaling of as a
function of charge carrier density, due to a magnetic field-induced suppression
of the long-range Coulomb interaction. We quantitatively confirm our
experimental findings by performing tight-binding calculations on the level of
the Hartree-Fock approximation, which also allow us to estimate an excitonic
binding energy of 6 meV contained in the experimentally extracted
Landau level transitions energies.Comment: 10 pages, 6 figure
In vitro activation of complement and contact system by lactic acidosis.
The activation of complement and contact systems occurs in reperfusion injuries with initial tissue hypoxia, and lactic acidosis such as mycardial infarction and birth asphyxia. The aim of our experiment was the formal proof of activation by sole lactic acidosis. Lactic acid was added to blood and plasma samples from 10 healthy volunteers. C5a and factor XIIa were measured by EIA after incubation at 37 degrees C for 1 h. Both concentrations increased (P < 0.0001 by Friedman analysis) in blood and plasma samples with increasing amount of added lactic acid. Lactic acidosis can activate C5 from the complement system and factor XII from the contact system directly, even in the absence of cellular components
Fabrication of comb-drive actuators for straining nanostructured suspended graphene
We report on the fabrication and characterization of an optimized comb-drive
actuator design for strain-dependent transport measurements on suspended
graphene. We fabricate devices from highly p-doped silicon using deep reactive
ion etching with a chromium mask. Crucially, we implement a gold layer to
reduce the device resistance from k to
at room temperature in order to allow for
strain-dependent transport measurements. The graphene is integrated by
mechanically transferring it directly onto the actuator using a
polymethylmethacrylate membrane. Importantly, the integrated graphene can be
nanostructured afterwards to optimize device functionality. The minimum feature
size of the structured suspended graphene is 30 nm, which allows for
interesting device concepts such as mechanically-tunable nanoconstrictions.
Finally, we characterize the fabricated devices by measuring the Raman spectrum
as well as the a mechanical resonance frequency of an integrated graphene sheet
for different strain values.Comment: 10 pages, 9 figure
Structure factors of harmonic and anharmonic Fibonacci chains by molecular dynamics simulations
The dynamics of quasicrystals is characterized by the existence of phason
excitations in addition to the usual phonon modes. In order to investigate
their interplay on an elementary level we resort to various one-dimensional
model systems. The main observables are the static, the incoherent, and the
coherent structure factor, which are extracted from molecular dynamics
simulations. For the validation of the algorithms, results for the harmonic
periodic chain are presented. We then study the Fibonacci chain with harmonic
and anharmonic interaction potentials. In the dynamic Fibonacci chain
neighboring atoms interact by double-well potentials allowing for phason flips.
The difference between the structure factors of the dynamic and the harmonic
Fibonacci chain lies in the temperature dependence of the phonon line width. If
a bias is introduced in the well depth, dispersionless optic phonon bands split
off.Comment: 12 pages, 15 figure
Ab initio many-body calculation of excitons in solid Ne and Ar
Absorption spectra, exciton energy levels and wave functions for solid Ne and
Ar have been calculated from first principles using many-body techniques.
Electronic band structures of Ne and Ar were calculated using the GW
approximation. Exciton states were calculated by diagonalizing an exciton
Hamiltonian derived from the particle-hole Green function, whose equation of
motion is the Bethe-Salpeter equation. Singlet and triplet exciton series up to
n=5 for Ne and n=3 for Ar were obtained. Binding energies and
longitudinal-transverse splittings of n=1 excitons are in excellent agreement
with experiment. Plots of correlated electron-hole wave functions show that the
electron-hole complex is delocalised over roughly 7 a.u. in solid Ar.Comment: 6 page
Enhanced rates of regional warming and ocean acidification after termination of large-scale ocean alkalinization
Termination effects of large‐scale Artificial Ocean Alkalinization (AOA) have received little attention because AOA was assumed to pose low environmental risk. With the Max‐Planck‐Institute Earth System Model, we use emission‐driven AOA simulations following the Representative Concentration Pathway 8.5 (RCP8.5). We find that after termination of AOA warming trends in regions of the Northern hemisphere become ∼50% higher than those in RCP8.5 with rates similar to those caused by termination of solar geoengineering over the following three decades after cessation (up to 0.15 K/year). Rates of ocean acidification after termination of AOA outpace those in RCP8.5. In warm shallow regions where vulnerable coral reefs are located, decreasing trends in surface pH double (0.01 units/year) and the drop in the carbonate saturation state (Ω) becomes up to one order of magnitude larger (0.2 units/year). Thus, termination of AOA poses higher risks to biological systems sensitive to fast‐paced environmental changes than previously thought. <br
Acidosis activates complement system in vitro.
We investigated the in vitro effect of different forms of acidosis (pH 7.0) on the formation of anaphylatoxins C3a and C5a. Metabolic acidosis due to addition of hydrochloric acid (10 micromol/ml blood) or lactic acid (5.5 micromol/ml) to heparin blood (N=12) caused significant activation of C3a and C5a compared to control (both p=0.002). Respiratory acidosis activated C3a (p=0.007) and C5a (p=0.003) compared to normocapnic controls. Making blood samples with lactic acidosis hypocapnic resulted in a median pH of 7.37. In this respiratory compensated metabolic acidosis, C3a and C5a were not increased. These experiments show that acidosis itself and not lactate trigger for activation of complement components C3 and C5
- …