1,293 research outputs found
A model for continuous monitoring of patients with major depression in short and long term periods
The final publication is available at IOS Press through http://dx.doi.org/10.3233/THC-161289BACKGROUND AND OBJECTIVE: Major depressive disorder causes more human suffering than any other disease affecting humankind. It has a high prevalence and it is predicted that it will be among the three leading causes of disease burden by 2030. The prevalence of depression, all of its social and personal costs, and its recurrent characteristics, put heavy constraints on the ability of the public healthcare system to provide sufficient support for patients with depression. In this research, a model for continuous monitoring and tracking of depression in both short-term and long-term periods is presented. This model is based on a new qualitative reasoning approach. METHOD: This paper describes the patient assessment unit of a major depression monitoring system that has three modules: a patient progress module, based on a qualitative reasoning model; an analysis module, based on expert knowledge and a rules-based system; and the communication module. These modules base their reasoning mainly on data of the patient's mood and life events that are obtained from the patient's responses to specific questionnaires (PHQ-9, M.I.N.I. and Brugha). The patient assessment unit provides synthetic and useful information for both patients and physicians, keeps them informed of the progress of patients, and alerts them in the case of necessity. RESULTS: A set of hypothetical patients has been defined based on clinically possible cases in order to perform a complete scenario evaluation. The results that have been verified by psychiatrists suggest the utility of the platform. CONCLUSION: The proposed major depression monitoring system takes advantage of current technologies and facilitates more frequent follow-up of the progress of patients during their home stay after being diagnosed with depression by a psychiatrist.Peer ReviewedPostprint (author's final draft
Implementation of secure email server in cloud environment
In the recent virtual communication world, the email services play a vital role as a basic content of heterogeneous networking infrastructure. Whereby, multiple platforms are connecting each other. Mail Server refers to computer performing Mail Transfer Agent functions. MTA is software that delivers electronic mail messages from one computer to another, by using client-server application architecture. MTA implements both sender and receiver portions of SMTP (Simple Mail Transfer Protocol). Postfix is a free and open-source MTA which is fast, easy-to-administrator and provide secure communication over Internet. In this paper we focus on the problem of email contents disclosure, and establish a secure mail server by using Postfix in Linux platform and then implement it into a cloud service provider as IaaS (Infrastructure as a Service). Security is provided by tuning a Transport Layer Security (TLS), and SMTP-AUTH which use Simple Authentication and Security Layer (SASL) as a security mechanism and platform
In-situ spectroscopy of intrinsic Bi2Te3 topological insulator thin films and impact of extrinsic defects
Combined in-situ x-ray photoemission spectroscopy, scanning tunnelling
spectroscopy and angle resolved photoemission spectroscopy of molecular beam
epitaxy grown Bi2Te3 on lattice mismatched substrates reveal high quality
stoichiometric thin films with topological surface states without a
contribution from the bulk bands at the Fermi energy. The absence of bulk
states at the Fermi energy is achieved without counter doping. We observe that
the surface morphology and electronic band structure of Bi2Te3 are not affected
by in-vacuo storage and exposure to oxygen, whereas major changes are observed
when exposed to ambient conditions. These films help define a pathway towards
intrinsic topological devices.Comment: 8 pages, 5 figure
CP violation in the inclusive b -> s g decay in the framework of multi Higgs doublet models
We study the decay width and CP asymmetry of the inclusive process b--> s g
(g denotes gluon) in the multi Higgs doublet models with complex Yukawa
couplings, including next to leading QCD corrections. We analyse the
dependencies of the decay width and CP asymmetry on the scale \mu and CP
violating parameter \theta. We observe that there exist an enhancement in the
decay width and CP asymmetry is at the order of 10^{-2}.Comment: 11 pages, 8 Figure
Signal yields, energy resolution, and recombination fluctuations in liquid xenon
This work presents an analysis of monoenergetic electronic recoil peaks in
the dark-matter-search and calibration data from the first underground science
run of the Large Underground Xenon (LUX) detector. Liquid xenon charge and
light yields for electronic recoil energies between 5.2 and 661.7 keV are
measured, as well as the energy resolution for the LUX detector at those same
energies. Additionally, there is an interpretation of existing measurements and
descriptions of electron-ion recombination fluctuations in liquid xenon as
limiting cases of a more general liquid xenon re- combination fluctuation
model. Measurements of the standard deviation of these fluctuations at
monoenergetic electronic recoil peaks exhibit a linear dependence on the number
of ions for energy deposits up to 661.7 keV, consistent with previous LUX
measurements between 2-16 keV with H. We highlight similarities in liquid
xenon recombination for electronic and nuclear recoils with a comparison of
recombination fluctuations measured with low-energy calibration data.Comment: 11 pages, 12 figures, 3 table
Identification of Radiopure Titanium for the LZ Dark Matter Experiment and Future Rare Event Searches
The LUX-ZEPLIN (LZ) experiment will search for dark matter particle
interactions with a detector containing a total of 10 tonnes of liquid xenon
within a double-vessel cryostat. The large mass and proximity of the cryostat
to the active detector volume demand the use of material with extremely low
intrinsic radioactivity. We report on the radioassay campaign conducted to
identify suitable metals, the determination of factors limiting radiopure
production, and the selection of titanium for construction of the LZ cryostat
and other detector components. This titanium has been measured with activities
of U~1.6~mBq/kg, U~0.09~mBq/kg,
Th~~mBq/kg, Th~~mBq/kg, K~0.54~mBq/kg, and Co~0.02~mBq/kg (68\% CL).
Such low intrinsic activities, which are some of the lowest ever reported for
titanium, enable its use for future dark matter and other rare event searches.
Monte Carlo simulations have been performed to assess the expected background
contribution from the LZ cryostat with this radioactivity. In 1,000 days of
WIMP search exposure of a 5.6-tonne fiducial mass, the cryostat will contribute
only a mean background of (stat)(sys) counts.Comment: 13 pages, 3 figures, accepted for publication in Astroparticle
Physic
- …
