203 research outputs found

    Common Mathematical Model of Fatigue Characteristics

    Get PDF
    This paper presents a new common mathematical model which is able to describe fatigue characteristics in the whole necessary range by one equation only:log N = A(R) + B(R) ∙ log Sawhere A(R) = AR2 + BR + C and B(R) = DR2 + AR + F.This model was verified by five sets of fatigue data taken from the literature and by our own three additional original fatigue sets. The fatigue data usually described the region of N 104 to 3 x 106 and stress ratio of R = -2 to 0.5. In all these cases the proposed model described fatigue results with small scatter. Studying this model, following knowledge was obtained:– the parameter ”stress ratio R” was a good physical characteristic– the proposed model provided a good description of the eight collections of fatigue test results by one equation only– the scatter of the results through the whole scope is only a little greater than that round the individual S/N curve– using this model while testing may reduce the number of test samples and shorten the test time– as the proposed model represents a common form of the S/N curve, it may be used for processing uniform objective fatigue life results, which may enable mutual comparison of fatigue characteristics

    Statistics for comparison of simulations and experiments of flow of blood cells

    Full text link
    In this article we propose statistical method for comparison of simulation and real biological experiments of elastic objects moving in fluid. Our work is focused on future optimization of microfluidic devices used for capture of circulating tumor cells from blood samples. Since the design optimization using biological experiments is both time consuming and expensive, in silico experiments with a broad spectrum of complex and computationally simulations are intensely performed. Necessary verification if simulation models, hitherto mainly realised by comparision of individual cells properties must be extended to more complex simulations. We present our first results with characteristics designed for this purpose

    Thresholded Covering Algorithms for Robust and Max-Min Optimization

    Full text link
    The general problem of robust optimization is this: one of several possible scenarios will appear tomorrow, but things are more expensive tomorrow than they are today. What should you anticipatorily buy today, so that the worst-case cost (summed over both days) is minimized? Feige et al. and Khandekar et al. considered the k-robust model where the possible outcomes tomorrow are given by all demand-subsets of size k, and gave algorithms for the set cover problem, and the Steiner tree and facility location problems in this model, respectively. In this paper, we give the following simple and intuitive template for k-robust problems: "having built some anticipatory solution, if there exists a single demand whose augmentation cost is larger than some threshold, augment the anticipatory solution to cover this demand as well, and repeat". In this paper we show that this template gives us improved approximation algorithms for k-robust Steiner tree and set cover, and the first approximation algorithms for k-robust Steiner forest, minimum-cut and multicut. All our approximation ratios (except for multicut) are almost best possible. As a by-product of our techniques, we also get algorithms for max-min problems of the form: "given a covering problem instance, which k of the elements are costliest to cover?".Comment: 24 page

    InP-based Optical Comb-locked Tunable Transmitter

    Get PDF
    We demonstrate a comb-based tunable transmitter with potential to be integrated on a single InP photonic chip. A Nyquist-shaped polarization-multiplexed 16QAM signal with 7.1 bit/s/Hz spectral efficiency is generated and transmitted over 300-km of SMF-28

    Distribution of telecom Time-Bin Entangled Photons through a 7.7 km Hollow-Core Fiber

    Full text link
    State of the art classical and quantum communication rely on standard optical fibers with solid cores to transmit light over long distances. However, recent advances have led to the emergence of hollow-core optical fibers (HCFs), which due to the novel fiber geometry, show remarkable optical guiding properties, which are not as limited by the material properties as solid-core fibers. In this paper, we explore the transmission of entangled photons through a novel 7.7 km HCF, presenting the first successful demonstration of entanglement distribution via long-distance HCF. Our study highlights the low latency and low chromatic dispersion intrinsic to HCF, which can increase the secure key rate in time-bin based quantum key distribution protocols.Comment: 9 pages (incl. 2 pages appendix), 5 figure

    Phase discrimination and simultaneous frequency conversion of the orthogonal components of an optical signal by four-wave mixing in an SOA

    Get PDF
    Simultaneous conversion of the two orthogonal phase components of an optical input to different output frequencies has been demonstrated by simulation and experiment. A single stage of four-wave mixing between the input signal and four pumps derived from a frequency comb was employed. The nonlinear device was a semiconductor optical amplifier, which provided overall signal gain and sufficient contrast for phase sensitive signal processing. The decomposition of a quadrature phase-shift keyed signal into a pair of binary phase-shift keyed outputs at different frequencies was also demonstrated by simulation

    Development of new all-optical signal regeneration technique

    Get PDF
    All-optical signal regeneration have been the active research area since last decade due to evolution of nonlinear optical signal processing. Existing all-optical signal regeneration techniques are agitated in producing low Bit Error Rate (BER) of 10-10 at below than -10 dBm power received. In this paper, a new all-optical signal regeneration technique is developed by using phase sensitive amplification and designed optical phase locked signal mechanism. The developed all-optical signal regeneration technique is tested for different 10 Gb/s Differential Phase Shift Keying degraded signals. It is determined that the designed all-optical signal regeneration technique is able to provide signal regeneration with noise mitigation for degraded signals. It is analyzed that overall, for all degraded test signals, average BER of 10-13 is achieved at received power of -14 dBm. The designed technique will be helpful to enhance the performance of existing signal regeneration systems in the presence of severe noise by providing minimum BER at low received power

    Osmium and lithium isotope evidence for weathering feedbacks linked to orbitally paced organic carbon burial and Silurian glaciations

    Get PDF
    The Ordovician (∼487 to 443 Ma) ended with the formation of extensive Southern Hemisphere ice sheets, known as the Hirnantian glaciation, and the second largest mass extinction in Earth History. It was followed by the Silurian (∼443 to 419 Ma), one of the most climatically unstable periods of the Phanerozoic as evidenced by several large scale (> 5‰) carbon isotope (δ13C) perturbations associated with further extinction events. Despite several decades of research, the cause of these environmental instabilities remains enigmatic. Here, we provide osmium (187Os/188Os) and lithium (δ7Li) isotope measurements of marine sedimentary rocks that cover four Silurian δ13C excursions. Osmium and Li isotope records resemble those previously recorded for the Hirnantian glaciation suggesting a similar causal mechanism. When combined with a new dynamic carbon-osmium-lithium biogeochemical model we suggest that astronomical forcing of the marine organic carbon cycle, as opposed to a decline in volcanic arc degassing or the rise of early land plants, resulted in drawdown of atmospheric CO2, triggering continental scale glaciation, intense global cooling and eustatic sea-level lows recognised in the geological record. Lower atmospheric pCO2 and temperatures during the Hirnantian and Silurian glaciations suppressed CO2 removal by silicate weathering, driving 187Os/188Os and δ7Li variability, supporting the existence of climate-regulating feedbacks

    NEAT-FT: the European fiber link collaboration

    No full text
    The development of clocks based on optical transitions during the past three decades culminates in the availability of optical clocks with unprecedented stability and uncertainty . Simultaneously, increasing requirements for accurate time and frequency signals, e.g. for tests of fundamental physics or novel applications in relativistic geodesy, put forward new challenges. Typically, such applications rely on the comparison of two remote clocks. Thus, major challenges are how to synchronize these clocks over long distances or how to get the time or frequency signal of a clock to the location where it is required. It is generally agreed that optical fiber links are an excellent alternative to established satellite based distant clock comparison and synchronization techniques. A European joint research project called Network for European Accurate Time and Frequency Transfer (NEAT-FT) has been initiated in 2011 to lay the foundations for a novel approach to disseminate high-precision timing and ultrastable frequency signals by using existing fiber infrastructure. Since Europe has a large number of modern ultra-precise clocks, special emphasis is put on the development of new techniques for time transfer and phase-coherent comparison of remotely located optical clocks and the feasibility of a European fibre network connecting optical clocks in Europe. This talk highlights recent achievements and discusses some applications and prospects

    30.7 Tb/s (96x320 Gb/s) DP-32QAM transmission over 19-cell photonic band gap fiber

    No full text
    We report for the first time coherently-detected, polarization-multiplexed transmission over a photonic band gap fiber. By transmitting 96 x 320-Gb/s DP-32QAM modulated channels, a net data rate of 24 Tb/s was obtained
    corecore