57 research outputs found
Partial reduction of anthracene by cold field emission in liquid in a microreactor with an integrated planar microstructured electrode
We report a novel microreactor with a photolithographically defined integrated electrode containing micro tips that serve as emission points for solvated electrons into liquid n-hexane in a microfluidic channel. The implementation of sharp electrode tips permits to extract electrons from the electrode material at relatively low voltages. The electric field distribution in the gap between a planar patterned platinum microtip array and a planar rectangular counterelectrode is analyzed by a computational model. Cold field emission using these microdevices is experimentally verified, and the partial reduction of anthracene to 9,10-dihydroanthracene, via solvated electrons emitted in solutions with or without ethanol in n-hexane is investigated. It is found that in the current microreactor configuration, the majority of the products are products originating from coupling of ethanol fragments to, and/or oxidation of 9,10-dihydroanthracene at the platinum counterelectrode, leaving no detectable yield of the desired reduction product
An all-glass microfluidic network with integrated amorphous silicon photosensors for on-chip monitoring of enzymatic biochemical assay
A lab-on-chip system, integrating an all-glass microfluidics and on-chip optical detection, was developed and tested. The microfluidic network is etched in a glass substrate, which is then sealed with a glass cover by direct bonding. Thin film amorphous silicon photosensors have been fabricated on the sealed microfluidic substrate preventing the contamination of the micro-channels. The microfluidic network is then made accessible by opening inlets and outlets just prior to the use, ensuring the sterility of the device. The entire fabrication process relies on conventional photolithographic microfabrication techniques and is suitable for low-cost mass production of the device. The lab-on-chip system has been tested by implementing a chemiluminescent biochemical reaction. The inner channel walls of the microfluidic network are chemically functionalized with a layer of polymer brushes and horseradish peroxidase is immobilized into the coated channel. The results demonstrate the successful on-chip detection of hydrogen peroxide down to 18 mu M by using luminol and 4-iodophenol as enhancer agent
Three-dimensional fractal geometry for gas permeation in microchannels
The novel concept of a microfluidic chip with an integrated three-dimensional fractal geometry with nanopores, acting as a gas transport membrane, is presented. The method of engineering the 3D fractal structure is based on a combination of anisotropic etching of silicon and corner lithography. The permeation of oxygen and carbon dioxide through the fractal membrane is measured and validated theoretically. The results show high permeation flux due to low resistance to mass transfer because of the hierarchical branched structure of the fractals, and the high number of the apertures. This approach offers an advantage of high surface to volume ratio and pores in the range of nanometers. The obtained results show that the gas permeation through the nanonozzles in the form of fractal geometry is remarkably enhanced in comparison to the commonly-used polydimethylsiloxane (PDMS) dense membrane. The developed chip is envisioned as an interesting alternative for gas-liquid contactors that require harsh conditions, such as microreactors or microdevices, for energy applications
Melt-Extrusion-Based Additive Manufacturing of Transparent Fused Silica Glass
In recent years, additive manufacturing (AM) of glass has attracted great interest in academia and industry, yet it is still mostly limited to liquid nanocomposite-based approaches for stereolithography, two-photon polymerization, or direct ink writing. Melt-extrusion-based processes, such as fused deposition modeling (FDM), which will allow facile manufacturing of large thin-walled components or simple multimaterial printing processes, are so far inaccessible for AM of transparent fused silica glass. Here, melt-extrusion-based AM of transparent fused silica is introduced by FDM and fused feedstock deposition (FFD) using thermoplastic silica nanocomposites that are converted to transparent glass using debinding and sintering. This will enable printing of previously inaccessible glass structures like high-aspect-ratio (>480) vessels with wall thicknesses down to 250 µm, delicate parts including overhanging features using polymer support structures, as well as dual extrusion for multicolored glasses
Understanding blood oxygenation in a microfluidic meander double side membrane contactor
Lung disease is one of the most important causes of high morbidity in preterm infants. In this work, we study a simple and easy to fabricate microfluidic device that demonstrates a great potential for blood oxygenation. A meander type architecture with double side vertical membrane arrangement has been selected as reference model to investigate the oxygenation process. The design criteria for the fabricated devices has been to maximize the oxygen saturation level while ensuring the physiological blood flow in order to avoid thrombus formation and channel blockage during operation. A mathematical model for the oxygen transfer has been developed and validated by the experimental study. The obtained results demonstrate that blood was successfully oxygenated up to approximately 98% of O-2 saturation and that the oxygen transfer rate at 1 mL/min blood flow rate was approximately 92 mL/minm(2). Finally, a sensitivity analysis of the key parameters, i.e. size of the channel, oxygen concentration in the gas phase and oxygen permeation properties of the membrane, is carried out to discuss the performance limits and to settle the guidelines for future developments.The authors would like to acknowledge the financial support from the Government of Aragón and the Education, Audiovisual and Culture Executive Agency (EU-EACEA) within the EUDIME - 'Erasmus Mundus Doctorate in Membrane Engineering' program (FPA 2011-0014, SGA 2012-1719, http://eudime.unical.it). CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011 financed by the Instituto de Salud Carlos III with the assistance of the European Regional Development Fund. Authors acknowledge the LMA-INA for offering access to their instruments and expertise
Continuous Quantum Measurement and the Emergence of Classical Chaos
We formulate the conditions under which the dynamics of a continuously
measured quantum system becomes indistinguishable from that of the
corresponding classical system. In particular, we demonstrate that even in a
classically chaotic system the quantum state vector conditioned by the
measurement remains localized and, under these conditions, follows a trajectory
characterized by the classical Lyapunov exponent.Comment: 5 pages, multicol revte
Continuous Quantum Measurement and the Quantum to Classical Transition
While ultimately they are described by quantum mechanics, macroscopic
mechanical systems are nevertheless observed to follow the trajectories
predicted by classical mechanics. Hence, in the regime defining macroscopic
physics, the trajectories of the correct classical motion must emerge from
quantum mechanics, a process referred to as the quantum to classical
transition. Extending previous work [Bhattacharya, Habib, and Jacobs, Phys.
Rev. Lett. {\bf 85}, 4852 (2000)], here we elucidate this transition in some
detail, showing that once the measurement processes which affect all
macroscopic systems are taken into account, quantum mechanics indeed predicts
the emergence of classical motion. We derive inequalities that describe the
parameter regime in which classical motion is obtained, and provide numerical
examples. We also demonstrate two further important properties of the classical
limit. First, that multiple observers all agree on the motion of an object, and
second, that classical statistical inference may be used to correctly track the
classical motion.Comment: 12 pages, 4 figures, Revtex
Quantum nonlinear dynamics of continuously measured systems
Classical dynamics is formulated as a Hamiltonian flow on phase space, while
quantum mechanics is formulated as a unitary dynamics in Hilbert space. These
different formulations have made it difficult to directly compare quantum and
classical nonlinear dynamics. Previous solutions have focussed on computing
quantities associated with a statistical ensemble such as variance or entropy.
However a more direct comparison would compare classical predictions to the
quantum for continuous simultaneous measurement of position and momentum of a
single system. In this paper we give a theory of such measurement and show that
chaotic behaviour in classical systems can be reproduced by continuously
measured quantum systems.Comment: 11 pages, REVTEX, 3 figure
- …