6 research outputs found
Application of recent advances in hydrodynamic methods for characterising mucins in solution
Mucins are the primary macromolecular component of mucus—nature’s natural lubricant—although they are poorly characterised heterogeneous substances. Recent advances in hydrodynamic methodology now offer the opportunity for gaining a better understanding of their solution properties. In this study a combination of such methods was used to provide increased understanding of a preparation of porcine intestinal mucin (PIM), MUC2 mucin, in terms of both heterogeneity and quantification of conformational flexibility. The new sedimentation equilibrium algorithm SEDFIT-MSTAR is applied to yield a weight average (over the whole distribution) molar mass of 7.1 × 106 g mol−1, in complete agreement with size exclusion chromatography coupled with multi-angle light scattering (SEC-MALS), which yielded a value of 7.2 × 106 g mol−1. Sedimentation velocity profiles show mucin to be very polydisperse, with a broad molar mass distribution obtained using the Extended Fujita algorithm, consistent with the elution profiles from SEC-MALS. On-line differential pressure viscometry coupled to the SEC-MALS was used to obtain the intrinsic viscosity [η] as a function of molar mass. These data combined with sedimentation coefficient data into the global conformation algorithm HYDFIT show that PIM has a flexible linear structure, with persistence length Lp ~10 nm and mass per unit length, ML ~2380 g mol−1 nm−1, consistent with a Wales-van Holde ratio of ~1.2 obtained from the concentration dependence of the sedimentation coefficient
Isolation and Biophysical Characterisation of Bioactive Polysaccharides from Cucurbita Moschata (Butternut Squash)
Cucurbits are plants that have been used frequently as functional foods. This study includes the extraction, isolation, and characterisation of the mesocarp polysaccharide of Cucurbita moschata. The polysaccharide component was purified by gel filtration into three fractions (NJBTF1, NJBTF2, and NJBTF3) of different molecular weights. Characterisation includes the hydrodynamic properties, identification of monosaccharide composition, and bioactivity. Sedimentation velocity also indicated the presence of small amounts of additional discrete higher molecular weight components even after fractionation. Sedimentation equilibrium revealed respective weight average molecular weights of 90, 31, and 19 kDa, with the higher fractions (NJBTF1 and NJBTF2) indicating a tendency to self-associate. Based on the limited amount of data (combinations of 3 sets of viscosity and sedimentation data corresponding to the 3 fractions), HYDFIT indicates an extended, semi-flexible coil conformation. Of all the fractions obtained, NJBTF1 showed the highest bioactivity. All fractions contained galacturonic acid and variable amounts of neutral sugars. To probe further, the extent of glycosidic linkages in NJBTF1 was estimated using gas chromatography–mass spectrometry (GCMS), yielding a high galacturonic acid content (for pectin polysaccharide) and the presence of fructans—the first evidence of fructans (levan) in the mesocarp. Our understanding of the size and structural flexibility together with the high bioactivity suggests that the polysaccharide obtained from C. moschata has the potential to be developed into a therapeutic agent
A novel global hydrodynamic analysis of the molecular flexibility of the dietary fibre polysaccharide konjac glucomannan
Konjac glucomannans have been widely considered in health food products although their hydrodynamic properties have been poorly understood. The weight-average molecular weight (Mw); sedimentation coefficient (s020,w) and intrinsic viscosities ([η]) have been estimated for five different preparations. The decrease in both intrinsic viscosity and sedimentation coefficient with molecular weight enables the estimation of molecular flexibility in terms of persistence length (Lp) using the traditional Bohdanecky-Bushin and Yamakawa-Fujii analyses for intrinsic viscosity and sedimentation data respectively. However, this requires an assumption of the mass per unit length ML. Advantage can now be taken of a recent development in data interpretation which allows the estimation of Lp from combined intrinsic viscosity and sedimentation coefficient data and also an estimate for ML. Using this "global" procedure an estimate of (13 ± 1) nm is found for Lp and a value of (330 ± 10) g mol-1 nm-1 for ML.. The value for Lp suggests a molecule of considerable flexibility, comparable to galactomannans (Lp ∼ 8-10 nm) but not as flexible as pullulan (Lp ∼ 1-2 nm). © 2009 Elsevier Ltd. All rights reserved
Structure and heterogeneity of gliadin: A hydrodynamic evaluation
A study of the heterogeneity and conformation in solution [in 70% (v/v) aq. ethanol] of gliadin proteins from wheat was undertaken based upon sedimentation velocity in the analytical ultracentrifuge, analysis of the distribution coefficients and ellipsoidal axial ratios assuming quasi-rigid particles, allowing for a range of plausible time-averaged hydration values. All classical fractions (α, γ, ωslow, ωfast) show three clearly resolved components. Based on the weight-average sedimentation coefficient for each fraction and a weight-average molecular weight from sedimentation equilibrium and/or cDNA sequence analysis, all the proteins are extended molecules with axial ratios ranging from ~10 to 30 with α appearing the most extended and γ the least. © 2009 European Biophysical Societies' Association
Extended Fujita approach to the molecular weight distribution of polysaccharides and other polymeric systems
In 1962 H. Fujita (H. Fujita, Mathematical Theory of Sedimentation Analysis, Academic Press, New York, 1962) examined the possibility of transforming a quasi-continuous distribution g(s) of sedimentation coefficient s into a distribution f(M) of molecular weight M for linear polymers using the relation f(M) = g(s) · (ds/dM) and showed that this could be done if information about the relation between s and M is available from other sources. Fujita provided the transformation based on the scaling relation s = κsM0.5, where κs is taken as a constant for that particular polymer and the exponent 0.5 essentially corresponds to a randomly coiled polymer under ideal conditions. This method has been successfully applied to mucus glycoproteins (S.E. Harding, Adv. Carbohyd. Chem. Biochem. 47 (1989) 345-381). We now describe an extension of the method to general conformation types via the scaling relation s = κMb, where b = 0.4-0.5 for a coil, ∼0.15-0.2 for a rod and ∼0.67 for a sphere. We give examples of distributions f(M) versus M obtained for polysaccharides from SEDFIT derived least squares g(s) versus s profiles (P. Schuck, Biophys. J. 78 (2000) 1606-1619) and the analytical derivative for ds/dM performed with Microcal ORIGIN. We also describe a more direct route from a direct numerical solution of the integral equation describing the molecular weight distribution problem. Both routes give identical distributions although the latter offers the advantage of being incorporated completely within SEDFIT. The method currently assumes that solutions behave ideally: sedimentation velocity has the major advantage over sedimentation equilibrium in that concentrations less than 0.2 mg/ml can be employed, and for many systems non-ideality effects can be reasonably ignored. For large, non-globular polymer systems, diffusive contributions are also likely to be small. © 2011 Elsevier Inc