43 research outputs found

    The effect of almond intake on cardiometabolic risk factors, inflammatory markers, and liver enzymes: A systematic review and meta‐analysis

    Get PDF
    Almond intake may be correlated with improvements in several cardiometabolic parameters, but its effects are controversial in the published literature, and it needs to be comprehensively summarized. We conducted a systematic search in several international electronic databases, including MEDLINE, EMBASE, Scopus, Web of Science, Cochrane Central Register of Controlled Trials, and until April 2021 to identify randomized controlled trials that examined the effects of almond consumption on cardiometabolic risk factors, inflammatory markers, and liver enzymes. Data were pooled using the random-effects model method and presented as standardized mean differences (SMDs) with 95% confidence intervals (CIs). Twenty-six eligible trials were analyzed (n = 1750 participants). Almond intake significantly decreased diastolic blood pressure, total cholesterol, triglyceride, low-density lipoprotein (LDL), non-high-density lipoprotein (HDL), and very LDL (p .05). The current body of evidence supports the ingestion of almonds for their beneficial lipid-lowering and antihypertensive effects. However, the effects of almonds on antiinflammatory markers, glycemic control, and hepatic enzymes should be further evaluated via performing more extensive randomized trials.info:eu-repo/semantics/publishedVersio

    Status of 48Ca double beta decay search and its future prospect in CANDLES

    Get PDF
    CANDLES(CAlcium fluoride for the study of Neutrinos and Dark matters by Low Energy Spectrometer) is the experiment to search for the neutrino-less double beta decay(0vββ) of 48Ca with CaF2 scintillator. 48Ca has the highest Qββ-value (4.3 MeV) among all isotope candidates for 0vββ. It enables us to measure signals with very low background condition. After rejection analysis with 131 days × 86 kg data for background events from radioactive contaminations in the CaF2 scintillators, no events are observed in the Qββ-value region. As a result, the 0vββ half-life of 48Ca is greater than 6.2 × 1022 yr (90% confidence level). For further high sensitive measurement of 48Ca 0vββ search, we have been developing the 48Ca enrichment and CaF2 scintillating bolometer techniques. In this paper, the latest result for CANDLES and the status of scintillating bolometer development are described

    A micropillar array-based microfluidic chip for label-free separation of circulating tumor cells: The best micropillar geometry?

    Get PDF
    Introduction The information derived from the number and characteristics of circulating tumor cells (CTCs), is crucial to ensure appropriate cancer treatment monitoring. Currently, diverse microfluidic platforms have been developed for isolating CTCs from blood, but it remains a challenge to develop a low-cost, practical, and efficient strategy. Objectives This study aimed to isolate CTCs from the blood of cancer patients via introducing a new and efficient micropillar array-based microfluidic chip (MPA-Chip), as well as providing prognostic information and monitoring the treatment efficacy in cancer patients. Methods We fabricated a microfluidic chip (MPA-Chip) containing arrays of micropillars with different geometries (lozenge, rectangle, circle, and triangle). We conducted numerical simulations to compare velocity and pressure profiles inside the micropillar arrays. Also, we experimentally evaluated the capture efficiency and purity of the geometries using breast and prostate cancer cell lines as well as a blood sample. Moreover, the device’s performance was validated on 12 patients with breast cancer (BC) in different states. Results The lozenge geometry was selected as the most effective and optimized micropillar design for CTCs isolation, providing high capture efficiency (>85 %), purity (>90 %), and viability (97 %). Furthermore, the lozenge MPA-chip was successfully validated by the detection of CTCs from 12 breast cancer (BC) patients, with non-metastatic (median number of 6 CTCs) and metastatic (median number of 25 CTCs) diseases, showing different prognoses. Also, increasing the chemotherapy period resulted in a decrease in the number of captured CTCs from 23 to 7 for the metastatic patient. The MPA-Chip size was only 0.25 cm2 and the throughput of a single chip was 0.5 ml/h, which can be increased by multiple MPA-Chips in parallel. Conclusion The lozenge MPA-Chip presented a novel micropillar geometry for on-chip CTC isolation, detection, and staining, and in the future, the possibilities can be extended to the culture of the CTCs

    Upgrading of shielding for rare decay search in CANDLES

    Get PDF
    In the CANDLES experiment aiming to search for the very rare neutrino-less double beta decays (0νββ) using 48Ca, we introduced a new shielding system for high energy γ-rays from neutron captures in massive materials near the detector, in addition to the background reduction for 232Th decays in the 0νββ target of CaF2 crystals. The method of background reduction and the performance of newly installed shielding system are described

    Cascaded Multilevel Inverter Based on Quasi-Z-Source Converter: Analysis, Design and Study of Optimal Structures

    No full text
    In this paper, a new topology for cascaded multilevel inverter based on quasi-Z-source converter is proposed. In the proposed topology the magnitude of output DC voltage is not limited to the sum of magnitude of DC voltage sources. Moreover, the reliability of the circuit due to capability of short circuit by Z-source network is increased. The quasi-Z- source converter in different modes is analyzed and the voltage gain is obtained. Also, the values of quasi-Z-source network components are designed. In the proposed topology, the number of DC voltage sources, the number of switches, installation area and cost in comparison with conventional multilevel inverters are significantly reduced. Three algorithms to determine the magnitude of DC voltage sources are proposed. Then the optimal structures for the minimum number of switches and DC voltage sources to generate the maximum voltage levels are presented. Moreover, the control method for the proposed topology is described. To verify the performance of the proposed topology, simulation and experimental results of proposed topology are presented
    corecore