554 research outputs found
Ultrafast Nonlinearities In Semiconductor-Laser Amplifiers
The bound-electronic optical nonlinearities in highly excited semiconductors (i.e., semiconductor lasers) have been calculated using a two-parabolic-band model. The nonlinear absorption spectrum is first obtained using a dressed-state formalism taking into account the contributions from two-photon absorption, electronic Raman, and optical Stark effects. The nonlinear refractive index ( n 2 ) is then found by performing a Kramers-Kronig transformation on the nonlinear absorption spectrum. It is also shown that the quadratic Stark splitting of the bands leads to a shift in the quasi-Fermi levels, which introduces additional absorptive and refractive nonlinearities. The sign, magnitude, and the current-density dependence of the calculated n 2 agree well with some recently published experimental results for Al-Ga-As and In-Ga-As-P diode lasers
Spatial homogeneity of optically switched semiconductor photonic crystals and of bulk semiconductors
This paper discusses free carrier generation by pulsed laser fields as a
mechanism to switch the optical properties of semiconductor photonic crystals
and bulk semiconductors on an ultrafast time scale. Requirements are set for
the switching magnitude, the time-scale, the induced absorption as well as the
spatial homogeneity, in particular for silicon at lambda= 1550 nm. Using a
nonlinear absorption model, we calculate carrier depth profiles and define a
homogeneity length l_hom. Homogeneity length contours are visualized in a plane
spanned by the linear and two-photon absorption coefficients. Such a
generalized homogeneity plot allows us to find optimum switching conditions at
pump frequencies near v/c= 5000 cm^{-1} (lambda= 2000 nm). We discuss the
effect of scattering in photonic crystals on the homogeneity. We experimentally
demonstrate a 10% refractive index switch in bulk silicon within 230 fs with a
lateral homogeneity of more than 30 micrometers. Our results are relevant for
switching of modulators in absence of photonic crystals
Squared-field amplitude modulus and radiation intensity nonequivalence within nonlinear slabs
This paper presents a novel approach to wave propagation inside the
Fabry-Perot framework. It states that the time-averaged Poynting vector modulus
could be nonequivalent with the squared-field amplitude modulus. This fact
permits the introduction of a new kind of nonlinear medium whose nonlinearity
is proportional to the time-averaged Poynting vector modulus. Its transmittance
is calculated and found to differ with that obtained for the Kerr medium, whose
nonlinearity is proportional to the squared-field amplitude modulus. The latter
emphasizes the nonequivalence of these magnitudes. A space-time symmetry
analysis shows that the Poynting nonlinearity should be only possible in
noncentrosymmetric materials.Comment: 5 pages, 4 figures, added space-time symmetry analysis and reference
Third-Order Optical Nonlinearities In Semiconductors - The Two-Band Model
We calculate the coherent electronic contributions to the third-order optical response χ(3)(-ω;ω,Ω,-Ω) of bulk semiconductors in the independent-particle approximation using a simple two-band model. The formalism used to derive this response coefficient naturally accounts for all relevant contributions and, in contrast to existing results in the literature, leads to physically realistic, nondivergent expressions in the limits ω,Ω→0. Such well behaved infrared limits imply that the imaginary part of our χ(3) correctly describes the dispersion of nondegenerate absorption; indeed for Ω=0 our results are consistent with predictions from Franz-Keldysh theory. Complementing these results, we can now also unambiguously extract from the real part of χ(3) the below band gap, two-band model predictions for the nonlinear refractive index, the dc Kerr effect, and the virtual photoconductivity; all of these predict a finite, real χ(3)(0;0,0,0) as physically expected for clean, cold semiconductors. Finally, our specific results help expose more general consequences of the gauge choice when employing common approximate band-structure models
Dynamic Band Unblocking And Leakage Two-Photon Absorption In Insb
An experimental demonstration of a dynamic decrease of the optical band gap of bulk n-InSb induced by picosecond, midinfrared laser pulses is reported. This occurs as a result of laser heating of the quiescent electron distribution by free-carrier absorption. The hot electrons vacate low-energy states near the conduction;band minimum,unblocking terminal states for two-photon absorption across the band gap. This \u27\u27leakage\u27\u27 two-photon absorption is detected as a consequence of changes to the refractive index and absorption coefficient of the semiconductor caused by photocarriers. The onset of dynamic band unblocking agrees with a calculation of laser-induced electron heating
Recommended from our members
Synthesis and evaluation of ultra-pure rare-earth-coped glass for laser refrigeration
Significant progress has been made in synthesizing and characterizing ultra-pure, rare-earth doped ZIBLAN (ZrF{sub 4}-InF{sub 3}BaF{sub 2}-LaF{sub 3}-AlF{sub 3}-NaF) glass capable of laser refrigeration. The glass was produced from fluorides which were purified and subsequently treated with hydrofluoric gas at elevated temperatures to remove impurities before glass formation. Several Yb3 +-doped samples were studied with degrees of purity and composition with successive iterations producing an improved material. We have developed a non-invasive, spectroscopic technique, two band differential luminescence thermometry (TBDLT), to evaluate the intrinsic quality of the ytterbium doped ZIBLAN used for laser cooling experiments. TBDLT measures local temperature changes within an illuminated volume resulting solely from changes in the relative thermal population of the excited state levels. This TBDLT technique utilizes two commercially available band pass filters to select and integrate the 'difference regions' of interest in the luminescence spectra. The goal is to determine the minimum temperature to which the ytterbium sample can cool on the local scale, unphased by surface heating. This temperature where heating and cooling are exactly balanced is the zero crossing temperature (ZCT) and can be used as a measure for the presence of impurities and the overall quality of the laser cooling material. Overall, favorable results were obtained from 1 % Yb3+-doped glass, indicating our glasses are desirable for laser refrigeration
Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities
We present a detailed study of soliton compression of ultra-short pulses
based on phase-mismatched second-harmonic generation (\textit{i.e.}, the
cascaded quadratic nonlinearity) in bulk quadratic nonlinear media. The
single-cycle propagation equations in the temporal domain including
higher-order nonlinear terms are presented. The balance between the quadratic
(SHG) and the cubic (Kerr) nonlinearity plays a crucial role: we define an
effective soliton number -- related to the difference between the SHG and the
Kerr soliton numbers -- and show that it has to be larger than unity for
successful pulse compression to take place. This requires that the phase
mismatch be below a critical level, which is high in a material where the
quadratic nonlinearity dominates over the cubic Kerr nonlinearity. Through
extensive numerical simulations we find dimensionless scaling laws, expressed
through the effective soliton number, which control the behaviour of the
compressed pulses. These laws hold in the stationary regime, in which
group-velocity mismatch effects are small, and they are similar to the ones
observed for fiber soliton compressors. The numerical simulations indicate that
clean compressed pulses below two optical cycles can be achieved in a
-barium borate crystal at appropriate wavelengths, even for picosecond
input pulses.Comment: 11 pages, 8 figures, resubmitted version, to appear in October issue
of J. Opt. Soc. Am. B. Substantially revised, updated mode
Nonlinear Optical Response Functions of Mott Insulators Based on Dynamical Mean Field Approximation
We investigate the nonlinear optical susceptibilities of Mott insulators with
the dynamical mean field approximation. The two-photon absorption (TPA) and the
third-harmonic generation (THG) spectra are calculated, and the classification
by the types of coupling to external fields shows different behavior from
conventional semiconductors. The direct transition terms are predominant both
in the TPA and THG spectra, and the importance of taking all types of
interaction with the external field into account is illustrated in connection
with the THG spectrum and dcKerr effect. The dependence of the TPA and THG
spectra on the Coulomb interaction indicate a scaling relation. We apply this
relation to the quantitative evaluation and obtain results comparable to those
of experiments.Comment: 14 pages, 12 figure
Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths
This document is the Accepted Manuscript version of a Published Work that appeared in final form in
Nano Letters, copyright © American Chemical Society after peer review and technica editing by the publisher. To access the final edited and published work see http://pubs.acs.org/page/policy/articlesonrequest/index.htmlWe demonstrate experimentally all-optical switching on a silicon chip at telecom wavelengths. The switching device comprises a compact ring resonator formed by horizontal silicon slot waveguides filled with highly nonlinear silicon nanocrystals in silica. When pumping at power levels about 100 mW using 10 ps pulses, more than 50% modulation depth is observed at the switch output. The switch performs about I order of magnitude faster than previous approaches on silicon and is fully fabricated using complementary metal oxide semiconductor technologies.The work was financially supported by the EU through project PHOLOGIC (FP6-IST-NMP-017158).Martínez Abietar, AJ.; Blasco Solbes, J.; Sanchis Kilders, P.; Galan Conejos, JV.; García-Rupérez, J.; Jordana, E.; Gautier, P.... (2010). Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths. Nano Letters. 10(4):1506-1511. doi:10.1021/nl9041017S1506151110
Borrmann Effect in Photonic Crystals: Nonlinear Optical Consequences
Nonlinear-optical manifestations of the Borrmann effect that are consequences
of the spectral dependence of the spatial distributions of the electromagnetic
field in a structure are observed in one-dimensional photonic crystals. The
spectrum of the light self-focusing effect corresponding to the
propagation-matrix calculations has been measured near the edge of the photonic
gap.Comment: 4 pages, 3 figures, published in russian at Pis'ma v Zhurnal
Eksperimental'noi i Teoreticheskoi Fiziki, 2008, Vol. 87, No. 8, pp. 461-46
- …