5,596 research outputs found

    Goddard X-ray astronomy contributions to the IAU/COSPAR (1982)

    Get PDF
    The relation of X-ray flux to both the continuum flux in the optical and radio bands, and to the line emission properties of these objects were studied. The Einstein Observatory, because of increased sensitivity and improved angular resolution, increased substantially the number of known X-ray emitting active galactic nuclei. The Einstein imaging instruments detected morphology in AGN X-ray emission, in particular from jetlike structures in Cen-A, M87, and 3C273. The improved energy resolution and sensitivity of the spectrometers onboard the Observatory provide information on the geometry and ionization structure of the region responsible for the broad optical emission lines in a few AGN's. This information, combined with theoretical modeling and IUE and optical observations, allows the construction of a moderately detailed picture of the broad line region in these objects

    Synthesis and electronic properties of Ruddlesden-Popper strontium iridate epitaxial thin films stabilized by control of growth kinetics

    Full text link
    We report on the selective fabrication of high-quality Sr2_2IrO4_4 and SrIrO3_3 epitaxial thin films from a single polycrystalline Sr2_2IrO4_4 target by pulsed laser deposition. Using a combination of X-ray diffraction and photoemission spectroscopy characterizations, we discover that within a relatively narrow range of substrate temperature, the oxygen partial pressure plays a critical role in the cation stoichiometric ratio of the films, and triggers the stabilization of different Ruddlesden-Popper (RP) phases. Resonant X-ray absorption spectroscopy measurements taken at the Ir LL-edge and the O KK-edge demonstrate the presence of strong spin-orbit coupling, and reveal the electronic and orbital structures of both compounds. These results suggest that in addition to the conventional thermodynamics consideration, higher members of the Srn+1_{n+1}Irn_nO3n+1_{3n+1} series can possibly be achieved by kinetic control away from the thermodynamic limit. These findings offer a new approach to the synthesis of ultra-thin films of the RP series of iridates and can be extended to other complex oxides with layered structure.Comment: 7 pages, 6 figure

    Experimental Gonococcal Infection in Male Volunteers: Cumulative Experience with Neisseria gonorrhoeae Strains FA1090 and MS11mkC

    Get PDF
    Experimental infection of male volunteers with Neisseria gonorrhoeae is safe and reproduces the clinical features of naturally acquired gonococcal urethritis. Human inoculation studies have helped define the natural history of experimental infection with two well-characterized strains of N. gonorrhoeae, FA1090 and MS11mkC. The human model has proved useful for testing the importance of putative gonococcal virulence factors for urethral infection in men. Studies with isogenic mutants have improved our understanding of the requirements for gonococcal LOS structures, pili, opacity proteins, IgA1 protease, and the ability of infecting organisms to obtain iron from human transferrin and lactoferrin during uncomplicated urethritis. The model also presents opportunities to examine innate host immune responses that may be exploited or improved in development and testing of gonococcal vaccines. Here we review results to date with human experimental gonorrhea

    The Human Host Defense Peptide LL-37 Interacts with Neisseria meningitidis Capsular Polysaccharides and Inhibits Inflammatory Mediators Release

    Get PDF
    Capsular polysaccharides (CPS) are a major virulence factor in meningococcal infections and form the basis for serogroup designation and protective vaccines. Our work has identified meningococcal CPS as a pro-inflammatory ligand that functions through TLR2 and TLR4-MD2-dependent activation. We hypothesized that human cationic host defense peptides interact with CPS and influence its biologic activity. Accordingly, the interaction of meningococcal CPS with the human-derived cationic peptide LL-37, which is expressed by phagocytic and epithelial cells that interface with meningococci during infection, was investigated. LL-37 neutralized the pro-inflammatory activity of endotoxin-free CPS as assessed by TLR2 and TLR4-MD-2-dependent release of TNFα, IL-6 and IL-8 from human and murine macrophages. The cationic and hydrophobic properties of LL-37 were crucial for this inhibition, which was due to binding of LL-37 to CPS. LL-37 also inhibited the ability of meningococcal CPS to induce nitric oxide release, as well as TNFα and CXCL10 (IP-10) release from TLR4-sufficient and TLR4-deficient murine macrophages. Truncated LL-37 analogs, especially those that retained the antibacterial domain, inhibited vaccine grade CPS and meningococcal CPS prepared from the major serogroups (A, B C, Y and W135). Thus, LL-37 interaction with CPS was independent of specific glucan structure. We conclude that the capacity of meningococcal CPS to activate macrophages via TLR2 and TLR4-MD-2 can be inhibited by the human cationic host defense peptide LL-37 and propose that this impacts CPS-based vaccine responses

    Redox activity and chemical speciation of size fractioned PM in the communities of the Los Angeles ? Long Beach Harbor

    Get PDF
    International audienceIn this study, two different types of assays were used to quantitatively measure the redox activity of PM and to examine its intrinsic toxicity: 1) in vitro exposure to rat alveolar macrophage (AM) cells using dichlorofluorescin diacetate (DCFH-DA) as the fluorescent probe (macrophage ROS assay), and: 2) consumption of dithiothreitol (DTT) in a cell-free system (DTT assay). Coarse (PM10?2.5), accumulation (PM2.5?0.25), and quasi-ultrafine (quasi-UF, PM0.25) mode particles were collected weekly at five sampling sites in the Los Angeles-Long Beach Harbor and at one site near the University of Southern California campus (urban site). All PM samples were analyzed for organic (total and water-soluble) and elemental carbon, organic species, inorganic ions, and total and water-soluble elements. Quasi-UF mode particles showed the highest redox activity at all Long Beach sites (on both a per-mass and per-air volume basis). A significant association (R2=0.61) was observed between the two assays, indicating that macrophage ROS and DTT levels are affected at least partially by similar PM species. Relatively small variation was observed for the DTT measurements across all size fractions and sites, whereas macrophage ROS levels showed more significant ranges across the three different particle size modes and throughout the sites (coefficients of variation, or CVs, were 0.35, 0.24 and 0.53 for quasi-UF, accumulation, and coarse mode particles, respectively). Association between the PM constituents and the redox activity was further investigated using multiple linear regression models. The results showed that OC was the most important component influencing the DTT activity of PM samples. The variability of macrophage ROS was explained by changes in OC concentrations and water-soluble vanadium (probably originating from ship emissions ? bunker oil combustion). The multiple regression models were used to predict the average diurnal macrophage ROS and DTT levels as a function of the OC concentration at one of the sampling sites

    Comparison of the COBE FIRAS and DIRBE Calibrations

    Get PDF
    We compare the independent FIRAS and DIRBE observations from the COBE in the wavelength range 100-300 microns. This cross calibration provides checks of both data sets. The results show that the data sets are consistent within the estimated gain and offset uncertainties of the two instruments. They show the possibility of improving the gain and offset determination of DIRBE at 140 and 240 microns.Comment: Accepted for publication in the Astrophysical Journal 11 pages, plus 3 figures in separate postscript files. Figure 3 has three part
    corecore