84 research outputs found

    Epidemiological Profile of Cleft Lip and Palate Patients Attending Tertiary Care Hospital and Medical Research Centre, Belgaum, Karnataka-A Hospital Based Study

    Get PDF
    Abstract: Cleft Lip and/or Palate (CL±P) is the most common congenital malformation of the face and it

    Photoelectrochemical properties of mesoporous NiOx deposited on technical FTO via nanopowder sintering in conventional and plasma atmospheres

    Get PDF
    Nanoporous nickel oxide (NiO x ) has been deposited with two different procedures of sintering (CS and RDS). Both samples display solid state oxidation at about 3.1 V vs Li+/Li. Upon sensitization of CS/RDS NiO x with erythrosine b (ERY), nickel oxide oxidation occurs at the same potential. Impedance spectroscopy revealed a higher charge transfer resistance for ERY-sensitized RDS NiO x with respect to sensitized CS NiO x . This was due to the chemisorption of a larger amount of ERY on RDS with respect to CS NiO x . Upon illumination the photoinduced charge transfer between ERY layer and NiO x could be observed only with oxidized CS. Photoelectrochemical effects of sensitized RDS NiO x were evidenced upon oxide reduction. With the addition of iodine RDS NiOx electrodes could give the reduction iodine → iodide in addition to the reduction of RDS NiO x . p-type dye sensitized solar cells were assembled with RDS NiO x photocathodes sensitized either by ERY or Fast Green. Resulting overall efficiencies ranged between 0.02 and 0.04 % upon irradiation with solar spectrum simulator (Iin : 0.1 W cm −2 )

    Multi-objective optimization of machining parameter in laser drilling of glass microballoon/epoxy syntactic foams

    No full text
    The effect of CO2 laser drilling on glass microballoon/epoxy syntactic foams are investigated in this study to optimize machining parameters to achieve a clean hole for various industrial applications. The epoxy matrix is reinforced with glass microballoons in concentrations of 0, 20 and 40 vol%. Cutting speed, laser power and additive percentage are input parameters for optimization. Kerf taper angle, surface roughness and ovality percentage are used as output responses to evaluate hole quality. For the optimization study, hybrid multi-criteria decision-making methods such as grey relational analysis and multi-objective optimization with ratio assessment methods are used, with equal weightage given to each output response. According to the study, low power and high speed produce better machining results such as a smaller kerf taper angle, lower surface roughness and a lower ovality percentage. Furthermore, a higher additive percentage is not appropriate for laser in epoxy/glass microballoon composite because it burns the area near the laser and increases surface roughness. © 2023 The Author(s

    Mechanical response of additively manufactured foam : A machine learning approach

    No full text
    This paper uses ensemble and automated machine learning algorithms to predict the mechanical properties (tensile and flexural strength) of a three-dimensionally printed (3DP) foamed structure. The closed cell foams were made from the most commonly used thermoplastic, High-Density Polyethylene (HDPE). The hollow glass microspheres are infused in HDPE at varying volume %. The available data on these foams' mechanical properties are used by the chosen machine learning (ML) algorithms to propose the best suited algorithm for such a three-phased microstructure as these closed cell foams exhibit. Finally, the strength predictions from the models were validated using experimental data. The models were trained with nozzle temperature, bed temperature, and force values as input parameters. The output parameters predicted were the tensile and flexural strength. LightGBM outperforms all other models in terms of performance among ensemble-based models, while H2OAutoML outperforms all other models. All the ML algorithms produced models with greater than 95% accuracy. Finally, memory and time consumption for each model are presented. © 2022 The Author

    Experimental and numerical investigation of a hybrid solar thermal-electric powered cooking oven

    No full text
    The rapid development in technology and changing food habits have drastically altered the cooking method in recent years. Electric ovens are dominating the cooking sector in bakeries, restaurants, and domestic cooking. India holds the second position in terms of revenue generated by the sales of cookers and ovens. The electrical energy requirements are also adding up with electricity-based cooking. In addition, solar energy-dependent solar cooking appliances are available in the market, but they come with their own set of merits and demerits. This paper discusses the new concept and development of an Electric-Solar hybrid cooking appliance. The implemented control mechanism in the fully-featured hybrid OTG (Oven, Toaster, & Griller) oven shows the simplicity and ease of using solar energy in conjunction with electrical energy. The experimental and numerical results show that the temperature distribution inside an electric-solar hybrid oven saves energy up to 51% and takes much less cooking time than electric ovens and solar cooking appliances when operating in hybrid mode. The STEPCO (Solar Thermal-Electric Powered Cooking Oven) oven has demonstrated potential for a relatively quick return on investment, with a payback period of around 2.3 years in hybrid mode and 3.7 years in solar mode. Experimental testing has shown that the hybrid mode of the STEPCO oven achieves an impressive efficiency of 63%, which is significantly higher than that of the electric and solar modes, which are only 35% and 4.0%, respectively. Additionally, the STEPCO oven has the environmental benefit of emitting very little CO2 during the cooking process when used in hybrid mode and zero CO2 emissions when used in solar mode. © 202

    Buckling and free vibrations behaviour through differential quadrature method for foamed composites

    No full text
    The current work focuses on predicting the buckling and free vibration frequencies (fn) of cenosphere reinforced epoxy based syntactic foam beam under varying loads. Critical buckling loads (Ncr) and fn are predicted using the differential quadrature method (DQM). Ncr and fn have been calculated for beams of varying cenosphere volume fractions subjected to axial load under clamped-clamped (CC), clamped-simply (CS), simply-simply (SS), and clamped-free (CF) boundary conditions (BC′s). Upon increasing the cenosphere volume fraction, Ncr and fn of syntactic foam composites increases. These numerical outcomes are compared with the theoretical values evaluated through the Euler-Bernoulli hypothesis and further compared with experimental outcomes. Results are observed to be in precise agreement. The results of the DQM numerical analysis are given out for the different BC′s, aspect ratios, cenosphere volume fractions, and varying loads. It is perceived that depending on the BC′s, the type of axial varying loads and aspect ratios has a substantial effect on the Ncr and fn behaviour of the syntactic foam beams. A comparative study of the obtained results showed that the beam subjected to parabolic load under CC boundary conditions exhibited a higher buckling load. © 2023 The Author
    • …
    corecore