6,263 research outputs found

    An improved algorithm for evaluating trellis phase codes

    Get PDF
    A method is described for evaluating the minimum distance parameters of trellis phase codes, including CPFSK, partial response FM, and more importantly, coded CPM (continuous phase modulation) schemes. The algorithm provides dramatically faster execution times and lesser memory requirements than previous algorithms. Results of sample calculations and timing comparisons are included

    Gravity Duals of Lifshitz-like Fixed Points

    Get PDF
    We find candidate macroscopic gravity duals for scale-invariant but non-Lorentz invariant fixed points, which do not have particle number as a conserved quantity. We compute two-point correlation functions which exhibit novel behavior relative to their AdS counterparts, and find holographic renormalization group flows to conformal field theories. Our theories are characterized by a dynamical critical exponent zz, which governs the anisotropy between spatial and temporal scaling t→λztt \to \lambda^z t, x→λxx \to \lambda x; we focus on the case with z=2z=2. Such theories describe multicritical points in certain magnetic materials and liquid crystals, and have been shown to arise at quantum critical points in toy models of the cuprate superconductors. This work can be considered a small step towards making useful dual descriptions of such critical points.Comment: 17 pages, harvmac; v2 comments about behavior of metric near r=0 added (thanks to S. Hartnoll and G. Horowitz

    Alternative splicing of beta-tropomyosin pre-mRNA: cis-acting elements and cellular factors that block the use of a skeletal muscle exon in nonmuscle cells

    Get PDF
    The rat beta-tropomyosin (beta-TM) gene encodes both skeletal muscle beta-TM and fibroblast TM-1 by an alternative RNA-splicing mechanism. This gene contains 11 exons. Exons 1-5, 8, and 9 are common to all mRNAs expressed from the gene. Exons 6 and 11 are used in fibroblasts as well as smooth muscle cells, whereas exons 7 and 10 are used in skeletal muscle cells. In this study we have carried out an extensive mutational analysis to identify cis-acting elements that block the use of the skeletal muscle-specific exon 7 in nonmuscle cells. These studies localize the critical elements for regulated alternative splicing to sequences within exon 7 and the adjacent upstream intron. In addition, mutations that inactivate the 5'- or 3'-splice sites of exon 6 do not result in the use of the skeletal muscle-specific exon 7 in nonmuscle cells, suggesting that splice-site selection in vivo is not regulated by a simple cis-acting competition mechanism but, rather, by a mechanism that inhibits the use of exon 7 in certain cellular environments. In support of this hypothesis we have identified sequence-specific RNA-binding proteins in HeLa cell nuclear extracts using native gel electrophoresis and binding competition assays. Mutations in the pre-mRNA that result in the use of the skeletal muscle exon in vivo also disrupt the binding of these proteins to the RNA in vitro. We propose that the binding of these proteins to the pre-mRNA is involved in regulated alternative splicing and that this interaction is required for blocking the use of the skeletal muscle exon in nonmuscle cells

    Phagocytes and the Lung

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72927/1/j.1749-6632.1997.tb46258.x.pd

    Heart and Lung Transplantation in the United States, 1996–2005

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74833/1/j.1600-6143.2007.01783.x.pd

    The effect of age on relational encoding as revealed by hippocampal functional connectivity

    Get PDF
    The neural processes mediating cognition occur in networks distributed throughout the brain. The encoding and retrieval of relational memories, memories for multiple items or multifeatural events, is supported by a network of brain regions, particularly the hippocampus. The hippocampal coupling hypothesis suggests that the hippocampus is functionally connected with the default mode network (DMN) during retrieval, but during encoding, decouples from the DMN. Based on prior research suggesting that older adults are less able to modulate between brain network states, we tested the hypothesis that older adults’ hippocampus would show functional connectivity with the DMN during relational encoding. The results suggest that, while the hippocampus is functionally connected to some regions of the DMN during relational encoding in both younger and older adults, older adults show additional DMN connectivity. Such age-related changes in network modulation appear not to be mediated by compensatory processes, but rather to reflect a form of neural inefficiency, most likely due to reduced inhibition

    Heart and Lung Transplantation in the United States, 1997–2006

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73552/1/j.1600-6143.2008.02175.x.pd

    Identification of two distinct intron elements involved in alternative splicing of beta-tropomyosin pre-mRNA

    Get PDF
    The rat beta-tropomyosin gene encodes two isoforms, termed skeletal muscle beta-tropomyosin and fibroblast last tropomyosim 1 (TM-1), via an alternative RNA processing mechanism. The gene contains 11 exons. Exons 1-5 and exons 8 and 9 are common to all mRNAs expressed from the gene. Exons 6 and 11 are used in fibroblasts, as well as smooth muscle, whereas exons 7 and 10 are used only in skeletal muscle. In the present studies we focused on the mutually exclusive internal alternative splice choice involving exon 6 (fibroblast-type splice) and exon 7 (skeletal muscle-type splice). We have identified two distinct elements in the intron, upstream of exon 7, involved in splice site selection. The first element is comprised of a polypyrimidine tract located 89-143 nucleotides upstream of the 3' splice site, which specifies the location of the lariat branchpoints used, 144-153 nucleotides upstream of exon 7. The 3' splice site AG dinucleotide has no role in selection of these branchpoints. The second element is comprised of intron sequences located between the polypyrimidine tract and the 3' splice site of exon 7. It contains an important determinant in alternative splice site selection, because deletion of these sequences results in the use of the skeletal muscle-specific exon in nonmuscle cells. We propose that the use of lariat branchpoints located far upstream from a 3' splice site may be a general feature of some alternatively excised introns, reflecting the presence of regulatory sequences located between the lariat branch site and the 3' splice site. The data also indicate that alternative splicing of the rat beta-tropomyosin gene is regulated by a somewhat different mechanism from that described for rat alpha-tropomyosin gene and the transformer-2 gene of Drosophila melanogaster
    • …
    corecore