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(	 Abstract

A method is described for evaluating the minimum distance parameters of
trellis-phase codes, including CPFSK, partial -response FM and, mare
importantly, coded CPM (continuous-phase modulation) schemes. The algorithm
provides dramatically faster execution times and lesser memory requirements
than previous algorithms. Results of sample calculations and timing
comparisons are included.
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AN IMPROVED ALGORITHM FOR EVALUATING TRELLIS PHASE CODES

I. INTRODUCTION

Trellis phase codes are digital phase -modulated (constant -envelope)

signals whose phase trajectories undergo smooth phase transitions which can

have memory induced by partial-response modulations and/or convolutional

pre-coding, [1), (2]. This combination of smoothness and memory provides

constant-envelope designs which have intrinsically good power spectra and

enhanced energy efficiency. The term "trellis" arises from the finite-state

trellis description which is possible for rational modulation indices, as

would be the case in any practical implementation.

Study of such signals for use on the white Gaussian noise channel with

coherent detection is based on finding the minimum distance, in the L2-norm,

between any pair of signals S1(t) and S 2 (t). This is a considerably more

difficult problem than finding the minimum Hamming distance of a convolutional

code since the group property is lacking and each "transmitted" sequence may

have a unique set of distances to all "received" sequences. Thus to

exhaustively determine minimum distance for signals of length N symbols with

M -ary modulation requires examination of M2N pairs of sequences of length N,

or 1t4 2N calculations of distance increments, which can be viewed as a basic

unit of computation.

If one considers a phase tree in which the phase trajectories of all

signals are plotted as a function of time, it is possible to imagine two

signals having the same trajectories up to a certain, point, their paths

diverging then meeting again at some later time. It is desired to determine

the minimum distance between any pair of signals which have split and

n

^.e
remerged.
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Previous approaches to finding the minimum distance have in fact explored

all pairs of paths in the phase tree which split at the initial tree level .

Pruning rules have been added so that if the cumulative distance exceeds the

present minimum distance for any merged pair, then descendants of the current

pair need not be considered. Pairs which are still contenders for

establishing the free distance, defined as the absolute minimum distance for

all pairs of signals, are kept alive by putting them on a memory stack [3] or

by use of a forward /backward search in the tree, [4]. The former is fast

relative to the latter, but can be quite consumptive of memory. Neither,

however, exploits the important finite -state nature of the signal (for

rational modulation indices), which is the intent of this paper.

Specifically, we show an algorithm for finding the distance to depth N

whose complexity is upper-bounded by 6(2 2v • M 2 • q • N) units of computation,

which is linear in N although the multiplier constant may be large. In the

above 2V is the number of "data states" in the encoder /modulator, M is the

number of signalling options in each interval, and q is the denominator of the

modulation index, h = p /q. Furthermore, memory resources necessary are very

manageable, 6 (22v q) in contrast to the potentially large stack size

required for previous tree-searching algorithms, [3].

We shall describe and illustrate the algorithm in the context of

convolutionally-coded CPFSK, [2], [4], although we note that the algorithm may

be applied to any finite-state phase-coded modulation scheme. These range

from M SK on the simple side to M-ary partial-response FM [1] and multi-h codes

[5] on the more complicated side. A necessary restriction is that h be

rational. Obviously any irrational h can be closely approximated by a
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rational h, with sufficiently large q, making the trellis size large. We

don't feel this is any practical limitation, however, for actual

implementations of modems will be restricted to rational h with small p and q

for the same complexity reasons.
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Let the modulated signal over the interval nT < t < (n+l)T be described as

S(t, —b) - L)1/2 cos (wct + $(t, b))	 (1)

where ^(t, b) is the phase modulation in response to the data sequence b - (bl,

b 2 , ... bn ). E is the energy per symbol, and T is the symbol interval. We may

write the phase in general as

f(bn, bn-1, ... bn-v +l, 8 n )	 f(Sn, On, bn)	 (2)

where Sn is the "data state" comprised of a finite number of previous data

symbols and On is the "phase state", which amounts to the cumulative phase

induced by all data symbols whose influence has ceased (see e.g. [1], [41).

In the unmodulated CPFSK case for example,

n-1	 (3)
O n =	 E bj h7r

j=1

The "state" of the modulator is defined as Xn = ( Sn , 8 n), and the structure

of the coding /modulation scheme induces a known state-transition equation. For

h = p/q, a finite-state representation having 2' • q states follows, with v

playing the role of "constraint length", or memory length of the combined

coder/modulator..

To decode such a signal in maximum likelihood fashion, the Viterbi

algorithm may be applied to a trellis having V • q states. For the Gaussian

channel, path metrics are correlations between the received signal and the

hypothesized transmitted signal. Our interest however is in determining the
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asymptotic performance of such a receiver, which for the assumed channel

requires determining the minimum distance between any two signals which are

merged at some time, split, then remerge later. Or, for finite-memory

receivers, we seek the minimum distance between pairs which split and are of

length N, denoted dN . We also define the free distance

dfree = lim dN	(4)
N+m

as usual.

The appropriate distance measure for this problew is

NT
d1 (N) = f	 [S 1 (t) - S2(t) 	 (5)2 

0

which reduces to, for w e >> 2n/T,

NT
d 2 (N) = (^ f	 [1 - cos e^(t)]dt	 (6)
12	 T	 0

where A^ W is the time-varying phase separation between the two signals of

length NT seconds. Observe that the value for dfree depends on h, the

modulation index; ¢(t,b), the phase modulation charactersitic; and the

"memory" of the encoding process which translates into longer remerger times.

5
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III.	 ALGORITI MI DESCRIPTION

In order to examine all pairs of sequences we form a pair-state trellis.

Each node in the trellis is defined by a triple consisting of S1 	 and S2
n	 r.

the two data states, and On - e1 	 - e2 , the phase difference at the start^' n	 n

of the current interval. 	 It is only necessary to specify the modulo 2n phase

difference which in fact allows us to use a finite-state model and a

trellis.	 It may be readily shown that there are q such phase differences,

where again h - p/q.	 Thus if there are 2v data states we now have q . 22,0

pair-states in the trellis. 	 The M 2 transitions from states at level n to

states at level n+l are defined by the encoder/modulator structure and have

incremental distances associated with them.

We note that the cumulative squared distance may be recursively computed

as

(n+1)T

4212 (nil)	 = d212 (n) + ( 2E ) j	 [1	 - cos 4o(t))dt	 (7)
T	 nT

and is completely specified by transitions in the pair-state trellis. 	 The

task now is to find the smallest distance between any pair-state corresponding

d

to a merger at level n = 0 and another merged pair-state at some level n,

while transitioning between pair-states in the pair-state trellis. 	 This is

completely analogous to the shortest-route problem and may be solved by

application of the dynamic programming solution in the form of the Viterbi

algorithm,	 [6].	 The "principle of optimality" here is that if a sequence pair

(b l , b2 ) is to produce the minimum distance event, 	 it will do so via

extensions of minimum distance pairs to some intermediate pair-state, and this

holds for all n.	 Thus it is sufficient to preserve the information associated

with the minimum distance pair for each pair state at each level n, 	 and

proceed forward recursively using the known pair-state transitions.

e ^w
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To locate the minimum distance for each pair state j we fetch previous

distances for the M 2 pair states which transition to j, add the incremental

distances associated with those transitions, make roughly M 2 comparisons to

find the minimum, and save this distance. If it is desired to locate the

minimum-producing sequence pair, path maps can be stored and updated as well.

Since there are 22V q pair-states and M2 branches / state we say the

complexity is 0'(2 2v	q • M 2 • N) for an N-Level trellis.

Actually the same pruning rules used in earlier implementations may be

applied to speed the calculation. Specifically, some initial (optimistic)

estimate of d2 freeis entered, and if the minimum distance of a pair leading

to a pair-state merge in the trellis (of which there are 2 2v at every level)

falls below the initial estimate, the d2 freevalue is decreased to the.newly

found value. d2 freeis decreased further if other subsequent merges give

lesser distances. Simultaneously, whenever the cumulative distance to a

non-merged pair-state exceeds the current d2 free, this pair-state need not be

±	 extended in the next trellis level for descendants of this pair-state cannot

ultimately produce the d2 freeevent.

The distance profile as a function of n, d2min(n), is also easily

obtained by locating the minimum of distances over all survivor pairs to

states at level n.

To initialize the algorithm, we assign zero distance to all merged

pair-states in the trellis, and Large initial distance to all others. In
s:

effect this allows the search for pair sequences beginning with any merged

d	 state, and thus the examination of all possible starting states is

incorporated automatically. In contrast, the-tree-searching procedures have

simply rooted the tree search in each possible initial state and found a

global distance minimum over this set of states.
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A flow-chart of the algorithm is shown in Figure 2. To give better feel

for the level of complexity, we list in Table 1 the trellis parameters for a

variety of pertinent cases. Application of the algorithm to seemingly

disparate cases is rather easy: all that must be done is identify a proper

state-description and its associated state transitions, and to define a

case-specific subroutine which computes a table of incremental distances for

various pair-state transitions.

The comparison between the trellis-based algorithm described here and the

tree-searching algorithms used previously is not as one-sided (exponential

versus linear in N) as the above complexity relations indicate. Pruning rules

in both algorithms speed the execution substantially, and in fact, [1] reports

search time much faster than exponential in N. Still the trellis algorithm

will be faster since it exploits pair-state merges while the tree-based

algorithms do not. In addition, our memory requirements are generally much

smaller, being known in advance as well, in contrast ' to the less predictable

stack-size requirement of tree-searching methods. Specific comparisons are

offered in the next section.

r'
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IV. EXAMPLES AND DISCUSSION

Our present interest is in evaluating the use of convolutional coding

combined with CPFSK and other CPM methods as a combined power/bandwidth

efficient scheme. The large number of possible code and modulation parameters

makes an efficient• distance computation essential.

First we consider the example of the rate 1/2, constraint-length 4 (v =

3) encoder of Figure 3. The two output code symbols are treated as a single

quaternary symbol in Lhe set {-3, -1, 1, 3) with natural-binary mapping

assumed, i.'e. 00	 -3, 11	 +3. We have earlier found this scheme to be
N

optimal in its class for h < 1/4. The free distance as a function of h for

this code is plotted in Figure 3, where we see monotone-increasing d2 freeup

to h slightly beyond 114. Thereafter other merger events dominate the

distance, and this code is no longer optimal, [4]. For certain values of h,

1/4 and 1/2 in this case, the distance has isolated small values owing to

unusually short merger events. These are known as weak modulation indices,
i

and other codes perform better at these h.

z

	

	 Also shown in Figure 4 and 5 are the distance results for r = 2/3, v = 2

coded octal CPFSK (the optimal small h code in this class [71) and for 4—ary

uncoded CPFSK, for which the distance result was already known. Both schemes

fit into the trellis phase code framework and are also readily evaluated by

this procedure. These distance plots were obtained by computing distance for

all rational h with h < 1/2 and q < 50. Due to this discretization, the

distance near the weak modulation indices is not represented exactly.

Also readily available from the algorithm is the "distance profile,"

dmin2(n) versus n for various h, or vice-versa. This reveals how much

receiver memory is necessary so that all unmerged pairs have distance

^!K
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exceeding d2free • For example, for the r a 1/2 code, with h < 1 /4, 11 symbol

delay is sufficient, while for r = 2/3, h < 1 /8, 12 symbol delay is adequate.
t

i	 t

£	 Table II lists execution times for the algorithm described here and a

q
tree-searching procedure similar to that of [3]. Both were programmed in 	 j

FORTRAN by reasonably competent programmers, using similar data types and

structures. We see the new method is faster as predicted, although the tree

method's pruning rules allow it to be reasonably close. The speed advantage	
{

diminishes as q increases due to the increasing trellis size. In this case, 	 !

many of the pair-states are "dead", but merely checking this fact reduces the

1	 i	 k
efficiency somewhat. As a general conclusion we can say the trellis algorithm

s

has its biggest gain when the tree is in fact mergeable into a small trellis,

which occurs for smaller memory lengths and q small.
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Signal TZpe # pair-states branches/state

MSK, h - 1 /2 2 (2) 4

4-ary CPFSK, h - 1/4 4 (4) 16
(uncoded)

4-ary 2 RC, h = 1/4 64 (40) 16

8-ary CPFSK, h = 1/8 8 (8) 64

r - 1/2, v = 2, coded 64 (40) 4
4-ary CPFSK, h - 1/4

r - 2/3, v - 2, coded 128 (80) 16
8-ary CPFSK, h - 1/8

binary {4/8, 5/81 multi-h 8 (8) 4
code

12

,.r

r	 .9

Table I.

Pair-State Trellis Parameters for Several Trellis Phase Codes

Case r h v Trellis Algorithm* Tree Algorithm* d2fr,,/2Eh

1 1/2 1/4 3 13 sec. 47 sec. 5.24

II " 1/5 3 16 32 4.30

III " 3/16 3 27 39 3.50

IV " 1/16 3 21 36 0.48

V 2/3 1/8 2 21 -- 2.56

* Run in FORTRAN on PDP 11/03 microcomputer.

Table II.

Comparit;on of Execution Times for Tree and Trellis Algorithms

i
i
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In i	 Modulator	
s1(t,b

	

I	 1	 ^

+	 2	 nT 
dt	

I d-122 (n)

_ 	>.-- fo ,

	

i	 1

	b2n I	 —
Modulator	 s2(t,b2)

2	 1

Finite-State Machine

Figure 1. Conceptual Description of Distance-Finding Problem: Vector-
Input Sequence Produces Scalar-Output Distance According to

n 4	 Finite-State (Trellis) Description.

111.
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d

N=1, d'free-1o0.

Initialize Pair-State
Trellis,

d2	 =1000.

low

Select Next
Pair-State

Iwo

Extend Next Path
from Pair-State

Calculate
Cumulative

Distance, d2 cum

YES	 smallest distance yet t
next pair-state, or

d2cum d2free

NO

NO	 Is 2	 0
d2cum ` d min

YES

d 2
 min = d

2
 cum

NO	 Merge event?

YES

d2free = d2cum

NO	
ast path

for current pair-state?

YES

NO	 last pair-
state at this level?

YES

NO
d min ? d2free?

YES

Output	 0 tput

d2min, N	 d^free,N

N = N+1	 END

Notes: d2 cumis cumulative distance on any path

d2 minis minimum distance (merged or
unmerged at each level)

d2 freeis free-distance

Figure 2. Flow-Chart for Distance Calculation
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