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Abstract

The neural processes mediating cognition occur in networks distributed throughout the brain. The 

encoding and retrieval of relational memories, memories for multiple items or multifeatural events, 

is supported by a network of brain regions, particularly the hippocampus. The hippocampal 

coupling hypothesis suggests that the hippocampus is functionally connected with the default 

mode network (DMN) during retrieval, but during encoding, decouples from the DMN. Based on 

prior research suggesting that older adults are less able to modulate between brain network states, 

we tested the hypothesis that older adults’ hippocampus would show functional connectivity with 

the DMN during relational encoding. The results suggest that, while the hippocampus is 

functionally connected to some regions of the DMN during relational encoding in both younger 

and older adults, older adults show additional DMN connectivity. Such age-related changes in 

network modulation appear not to be mediated by compensatory processes, but rather to reflect a 

form of neural inefficiency, most likely due to reduced inhibition.

1. INTRODUCTION

In recent years, the field of cognitive neuroscience has moved toward describing functional 

activity within the brain in terms of neural networks, as opposed to regional activations. 

While several networks supporting task-oriented cognitive processes have been described 

(Van den Heuvel & Hulshoff, 2010), one large-scale network, the default-mode network 

(DMN), has become the focus of a substantial amount of research (e.g., Ferreira & Busatto, 

2013; Fox et al., 2005; Raichle et al., 2001). Correlated activity between brain regions within 

the DMN occurs when one’s thoughts are internally driven (Andrews-Hanna, Smallwood, & 

Spreng, 2014a), such as during wakeful rest (Fox et al., 2005; Raichle et al., 2001), episodic 

retrieval and autobiographical memory (Addis, Wong, & Schacter, 2007; Andrews-Hanna, 

Saxe, & Yarkoni, 2014b), and during mind wandering or introspection (Mevel, Chételat, 

Eustache, & Desgranges, 2011). Neural components of the DMN include the posterior 
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cingulate cortex (PCC)/precuneus, medial prefrontal cortex (MPFC), bilateral angular gyri, 

and the medial temporal lobes, including the hippocampus (for review see Andrews-Hanna 

et al., 2014a; Ferreira & Busatto, 2013; Mevel et al., 2011).

More recently, the hippocampal coupling hypothesis (HCH) proposes that the hippocampus 

is functionally connected with the DMN during episodic memory retrieval; however, it 

decouples from the DMN during episodic memory encoding (Huijbers, Pennartz, Cabeza, & 

Daselaar, 2011). The hippocampus contributes to the DMN primarily via its engagement in 

the retrieval of episodic memories, which is in line with its purported role in introspection or 

mind wandering (Mevel et al., 2011). Introspection requires mental time travel, theory of 

mind, and the construction of future and past events, all of which involve the hippocampally-

mediated retrieval of episodes (Addis et al., 2007). The hippocampus is also posited to 

decouple from the DMN during encoding because of its role in the storage and processing of 

episodic memories, a largely externally oriented task (Huijbers et al., 2011).

The status of the DMN, as well as its relationship with other large-scale brain networks, has 

been the focus of several investigations of clinical samples, including Autism (Cherkassky, 

Kana, Keller, & Just, 2006; Courchesne & Pierce, 2005), Schizophrenia (Garrity et al., 

2007), and others (Broyd et al., 2009). In addition to clinical populations, healthy aging has 

also been shown to lead to alterations in the strength of connections within neural networks 

(Geerligs, Maurits, Renken, & Lorist, 2014; Grady et al., 2010; Lustig et al., 2003; Persson, 

Lustig, Nelson, & Reuter-Lorenz, 2007; Salami, Pudas, & Nyberg, 2014), the composition 

of networks (Andrews-Hanna et al., 2007; Geerligs et al., 2014; Grady et al., 2010; Lustig et 

al., 2003; Persson et al., 2007; Salami et al., 2014), and the modulation between network 

states (Grady et al., 2006; Grady et al., 2010; Salami et al.,2014; Sambataro et al., 2010; 

Sambataro et al., 2012). For example, Salami et al. (2014) examined the influence of age on 

hippocampal connectivity during relational encoding and separately during resting-state. To 

do so, they compared hippocampal functional connectivity to anterior and posterior DMN 

regions during rest, as well as connectivity between hippocampi during encoding. Their 

results showed that OAs exhibit reduced connectivity between the hippocampus and cortical 

portions of the DMN during rest and increased inter-hippocampal connectivity during task 

and rest. Their results also showed that the aberrant patterns of connectivity correlated with 

episodic memory performance. That is, as the hippocampus became less connected to the 

DMN and more connected to itself, memory performance declined. Further, Grady et al. 

(2010), using several different cognitive tasks, reported that OAs exhibited weaker MPFC 

connectivity to posterior DMN regions as compared to younger adults (YAs), suggesting that 

the strength of long-range connections decreases with age. Grady et al. (2010) also observed 

that OAs tended to deactivate several DMN regions, including the parahippocampal gyrus 

and precuneus, to a lesser extent than YAs during working memory tasks (i.e., OAs showed 

greater activity in DMN regions during task), indicating that OAs are less able to modulate 

between the two networks. Given that the HCH suggests that the hippocampus should be 

decoupled from the DMN during encoding, and that prior studies have demonstrated that 

OAs are less able to modulate between different networks, the primary goal of the current 

study was to examine whether OAs show evidence of less decoupling of the hippocampus 

from the DMN during a relational encoding task.
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Prior behavioral research centered on age-related memory differences has typically focused 

on relational or source memory, as this type of memory exhibits greater age-related 

reductions than memory for single items (for review, see Spencer & Raz, 1995; Old & 

Naveh-Benjamin, 2008). Relational encoding requires the binding of multiple items, or 

multiple features of an item, into a single memory trace for later recall. Prominent theories 

about relational encoding suggest that the “features” of the item are initially processed in the 

cortex, but are then bound into a single trace through processing via the hippocampus 

(Alvarez and Squire, 1994; Eichenbaum, 1992; Norman & O’Reilly, 2003). Encoding an 

array of features more closely mimics the type of episodic memory that occurs in day-to-day 

life. For example, it is less common that we need to remember lists of unrelated words; 

however, needing to remember on what parking garage level you parked your car, or the 

building, floor, and room number of a meeting (i.e., multiple features of a single event), is a 

comparatively more common mnemonic experience. As such, investigating the interaction 

between functional networks and relational memory processes offers important insights into 

the neural processing mechanisms that underlie memory changes due to aging.

Several studies have assessed functional connectivity associated with the encoding and 

retrieval of relational memories (e.g., Fornito, Harrison, Zalesky, & Simons, 2012; Ritchey, 

Yonelinas, & Ranganath, 2014); however, far fewer studies have specifically investigated 

hippocampal functional connectivity associated with age and relational memory (e.g., Grady, 

McIntosh, & Craik, 2003; Oh & Jaugst, 2013; Salami et al., 2014). The results of these 

studies primarily show increased connectivity with MTL regions and frontal regions during 

encoding; however, such studies also tend to find increased connectivity with regions of the 

parietal lobe, precuneus/cuneus, and between the left and right hippocampi (Grady, 

McIntosh, & Craik, 2003; Oh & Jaugst, 2013; Salami et al., 2014). While the results from 

these prior studies have been critical for building an understanding of how the hippocampus 

interacts with the rest of the brain to support mnemonic processes, only Salami et al. (2014) 

directly relate their results to established networks in the brain (e.g., the DMN). However, 

hippocampal connectivity to the DMN during the cognitive task was not assessed. Moreover, 

studies investigating functional networks that include the hippocampus have not used an 

encoding task to assess whether OAs show decoupling of the hippocampus from the DMN 

to a similar degree as YAs during encoding.

The current study also sought to address specific interpretational weaknesses that exist in the 

prior literature. To our knowledge, no prior study has matched all aspects of behavioral 

performance on the in-scanner cognitive task between OAs and YAs. Matching behavioral 

performance during a task enhances the ability to interpret neural differences (for a detailed 

discussion of these ideas see Morcom, Good, Frackowiak, & Rugg, 2003 and Snyder et al., 

2011). In brief, the interpretation of neural differences when group differences in behavior 

exist may be hampered by differences in memory strength, memory quality, effort, 

motivation, uncertainty, or strategy. As such, we took several steps to equate performance on 

the memory tasks given to YAs and OAs. Additionally, we utilized a beta-series correlation 

analysis (Rissman, Gazzaley, & D’Esposito, 2004). One strength of this type of analysis is 

the ability to capture specific stages of a cognitive task. In the context of the current study, 

we isolated hippocampal functional connectivity associated with relational encoding as 
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compared to the semantic judgment used to orient participants to the to-be-encoded 

materials.

Based on prior research suggesting that OAs are less able to modulate between network 

states, and that OAs tend to perform worse on relational memory tasks, the current study 

sought to investigate whether connectivity between the hippocampus and other neural 

structures would be altered by age during a relational encoding task. More specifically, we 

tested the hypothesis that OAs, as compared to YAs, would exhibit greater hippocampal 

connectivity to regions associated with the DMN. Since the hippocampus is a critical 

component of memory encoding and retrieval, understanding how aging impacts 

hippocampal functional connectivity will improve our understanding of the potential causes 

of relational memory changes associated with age.

2. MATERIALS AND METHODS

2.1 PARTICIPANTS

Participants for this study included 14 YAs and 13 OAs who were right handed, native 

English speakers, had normal or corrected-to-normal vision, and no history of neurological 

or psychological illness. All participants provided written informed consent and were paid 

for their participation. Older adults were also screened for dementia with a 

neuropsychological test battery (see Table 1). Three YAs and 2 OAs were excluded from the 

analysis due to at-chance performance, perfect performance, or excessive motion. 

Experimental procedures were approved by the Institutional Review Board at the University 

of North Carolina at Chapel Hill.

2.2 STIMULI

To assess relational encoding, the current study utilized a paradigm similar to that of 

Uncapher, Otten, and Rugg (2006). In this paradigm, participants encode a word presented 

in one of four colors (red, green, blue, yellow) and in one of four locations (top left, top 

right, bottom left, bottom right) on a computer screen. Two hundred and eighty eight nouns, 

4–9 letters long, were obtained from the MRC Psycholinguistic Database (http://

websites.psychology.uwa.edu.au/school/MRCDatabase/uwa_mrc.htm; Wilson, 1988). 

Nouns had a written frequency of 1–30 counts per million and a concreteness rating greater 

than 350 (Kucera-Francis, 1967). Eight of the words were used as primacy items and not 

included in any analyses. The rest of the words were divided equally to create 4 categories, 

animate and smaller than a shoebox, animate and larger than a shoebox, inanimate and 

smaller than a shoebox, and inanimate and larger than a shoebox. Fourteen lists of 20 items 

(5 in each of the previously mentioned categories) were created. Two lists were used as a 

practice for each subject. Fifteen words were randomly chosen as targets and 8 as lures to 

match the target lure ratio during the actual experiment. Of the remaining 12 lists, each 

subject received 8 as study lists and 4 acted as lures for the memory test. Within each list, 4 

of the items were not presented in color to act as “filler” items. This was done because the 

original study by Uncapher et al. (2006) found filler items were needed to improve 

performance of color memory. Essentially, when the only semantic judgment was animacy, 

and all of the words were presented in color, memory for the color feature was close to floor. 
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The assignment of lists to each condition and run number was counterbalanced across 

subjects. Within a single study phase (2 lists), participants saw 40 words that equally 

represented each color and location. Across runs, color and location were also equally 

divided among the 4 categories of word types (i.e., animate and smaller than a shoebox, 

etc.). The memory test consisted of the 32 colored words and the 2 primacy items presented 

at study, as well as 20 items from the list of lures. Items on a test were presented in a random 

order.

2.3 PROCEDURE

Several strategies were implemented to aid in matching behavioral performance between the 

YA and OA groups. First, all participants were given 4 study-test runs in which each study-

test run was made up of unique items. Each non-scanned test session occurred immediately 

after the corresponding scanned encoding run. Second, each item was presented for 6 

seconds, in contrast to the 3-second rate used by Uncapher et al. (2006). Third, YAs were 

given 4 minutes of math problems between study and test whereas OAs were tested 

immediately after the study portion completed. To ensure participants maintained focus on 

the task, they were given two orienting tasks; participants either made animate/inanimate 

judgements or decided whether the item was larger than a shoebox. Older adults were 

coached not to dwell on the initial semantic judgment, but to make that decision quickly and 

then focus on encoding the material. During pilot testing, we observed that older adults 

spent more time on this task than young adults, impacting the time they had to study the 

features associated with each item. Since semantic judgments about a single word require 

different cognitive operations than does encoding a multifeatural event, we strove to ensure 

that both OAs and YAs spent similar amounts of time on each portion of the task.

Participants were instructed to encode each word along with its color and location to the best 

of their ability; however, they were told that they did not need to remember words presented 

in black. For words presented in color, participants made animacy judgments. For words 

presented in black, participants made size judgments. A reminder prompt for the judgment 

was presented on each trial at the bottom of the screen. Participants were also told that there 

would occasionally be screens where no words would be presented in the boxes and that no 

response was needed for these trials. All responses were collected with using a 5 button MR 

compatible response box (only the first two buttons were used for the encoding decisions). 

Trials lasted 6 seconds. The word was presented for 5.5 sec and displaced with a fixation 

cross for 500 msec.

At test, participants made “old”/”new” judgments to words presented one at a time for a 

maximum of 6 seconds. If participants indicated a word was “old,” they were then prompted 

to indicate in which color the word was presented and then in which location it was 

presented. A maximum of 8 seconds was given to make each color and location judgment. 

They were always asked in the same order, color then location, and the key corresponding to 

each option was indicated at the bottom of the screen (i.e., key 1 corresponds to red, etc.). If 

participants responded “new,” the next word was presented. Participants were told to make 

their best guess if they were unsure of the correct answer. A brief 2 minute break was given 

after each test phase.
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While it is typical to collect resting state images before a task, we opted to collect resting 

state images after the task. The goal of this design was to reduce the delay between 

instruction and practice for the task and engagement in the in-scanner task. Although Groen, 

Sokolov, Jonas, Roebling, & Spitzer (2011) showed evidence that post-learning resting state 

data can be influenced by the preceding cognitive task, Grady et al. (2010) were able to 

extract the core components of the DMN even during fixations that were interspersed 

between tasks. This suggests that the key components of the DMN are robust even when 

collected after a task has been administered. For resting state data collection, participants 

were informed the task was over and that image collection would continue for approximately 

5 minutes. They were given no specific instructions and presented with a blank screen for 

the duration of the scan.

2.4 IMAGE ACQUISITION

The MRI data were collected at the University of North Carolina’s Biomedical Research 

Imaging Center using a Siemens Magnetom Trio 3-T MR scanner (Siemens Medical 

Systems, Iselin, NJ) equipped with a three-axis gradient head coil to acquire both anatomical 

and functional images. All stimuli were back-projected onto a screen and viewed by the 

subject on an MR-compatible mirror above the subject’s head. Subjects who normally wore 

glasses or contacts were fitted with MR-compatible glasses whose lenses matched their 

prescription. Responses were recorded with a 5-button MR-compatible response box using 

each subject’s right hand.

The anatomical images were collected with a high-resolution T1-weighted MPRAGE 

sequence and slices were acquired in an ascending manner (TR = 1900 msec, TE = 2.26 

msec, voxel size = 1mm3, flip angle = 9°, 192 slices, acquisition time = 266 sec). The 

functional images were collected with a T2-weighted EPI sequence and slices were acquired 

in a bottom-up interleaved manner (TR = 3000 msec, TE = 23 msec, voxel size = 3mm3, flip 

angle = 9°). Slice acquisition was also oriented along the long axis of the hippocampi 

according to each subject’s anatomical scan to improve signal from this region. The 

functional data were acquired in 4 sessions ranging from 190 to 192 volumes each. The trial 

sequences were generated using Opt Seq 2 (http://surfer.nmr.mgh.harvard.edu/optseq/). 

Using a set of user-defined constraints, this program generates a stimulus presentation 

schedule that helps a rapid-presentation event-related fMRI experiment achieve an optimal 

stochastic design. Because scanning only took place during encoding, only the study phase 

sequences of each run were generated using Opt Seq 2. Null events were trials in which no 

words appeared on the screen; only the grey squares that, during encoding trials, contained 

words. All null events were a multiple of the TR (either 3 or 6 sec), with 50% of the null 

events lasting for 3 secs. Resting state images were collected with a T2-weighted EPI 

sequence and slices were acquired in a bottom-up interleaved manner (TR = 2000 msec, TE 

= 32 msec, voxel size = 4mm3, flip angle = 80°). Acquisition time was 5 minutes and 6 

seconds.

2.5 IMAGE PROCESSING

Standard preprocessing procedures were used for both resting state and task based 

connectivity analyses. This included discarding the first two functional scans to allow for 
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scanner equilibrium, slice-time correction, rigid-body motion correction and unwarping, 

spatial normalization to the EPI template of the Montreal Neurological Institute (MNI) 

defined standardized brain space, and finally, images were smoothed with an 8mm FWHM 

Gaussian kernel. For task related functional scans a high-pass filter was used with a cutoff of 

128. For resting state functional scans a band pass filter attenuated frequencies above .1 and 

below .01 Hz. We also segmented each participant’s brain into white matter, cerebrospinal 

fluid (CSF), and grey matter, and used the white matter and CSF masks to extract an average 

signal from each volume across all scans in a functional run. The white matter and CSF 

signals were then used as regressors of no interest in the individual analysis to control for 

any signal coming from these regions. To ensure voxels used in the mask were within their 

respective tissue class, a binary mask was created from the segmented files using a cutoff 

of .95 (i.e., a 95% probability that the mask contains the correct tissue type).

2.6 TASK ANALYSIS

Due to the nature of the encoding task, participants were engaged in the semantic judgment 

(e.g., animacy or size) during the first half of the encoding trial, after which they focused on 

encoding all of the features of the item. Based on the similar reaction times between the two 

groups and the fact that almost all reaction times to the semantic judgment occurred before 

the first 3 seconds of the encoding trial, each trial type was modeled as a stick function 

starting 3 seconds after the initial presentation of the stimulus. This approach afforded the 

opportunity to more accurately model relational encoding processes, as opposed to processes 

associated with making the semantic judgments. To assess whole brain functional 

connectivity we implemented a beta-series correlation analysis (Rissman, Gazzaley, & 

D’Esposito, 2004). In this analysis, each event is modeled as an individual regressor within 

the general linear model (i.e., beta value) and then sorted into the appropriate trial types (i.e., 

beta series). The degree to which two voxels’ beta series correlate within a certain trial type 

is the degree to which they are functionally connected. We implemented this strategy within 

Statistical Parametric Mapping 8 (SPM 8, Wellcome Department of Cognitive Neurology, 

London) operating within Matlab (Matlab Mathwork, Inc., Natick, MA).

For the beta series correlation analysis a seed region was chosen that has been shown to be 

equivalently activated by both OAs and YAs during a similar encoding task (Morcom et al., 

2003). A 6mm sphere (chosen because it fit within the confines of the hippocampus) 

centered in the anterior portion of the left hippocampus (Talairach coordinates: xyz, -30, -15, 

-15) was used as the seed of interest. At the fixed effects level, each trial was modeled as an 

individual regressor within the GLM framework along with several regressors of no interest. 

Regressors of no interest included six parameters for motion, one parameter for white matter 

signal and one for CSF signal. Due to the low number of misses, incorrect trials were also 

modeled but not included in the final analysis. The beta estimate for each correct trial was 

then sorted into either item only (IO; i.e., only the word was remembered but no other 

details), item and color (IC; i.e., both the word and the color in which it was presented were 

remembered, but not the location), item and location (IL; i.e., both the word and the location 

were remembered but not the color), or item, color, and location (ICL; i.e., the item and both 

of its features were remembered). A correlation was then calculated for each condition 

between the hippocampal ROI and every other voxel in the brain. For statistical 
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interpretation, correlation values were transformed to z scores using an arc-hyperbolic 

tangent transform (Fisher, 1921) divided by its known standard deviation ( ), N 

being the number of data points in the correlation).

Each participant’s condition specific z-maps were then entered into a second level analysis. 

Unless otherwise noted, significance thresholds were determined using a cluster-wise 

approach for correction of multiple comparisons. Monte Carlo simulations (10,000 

iterations) conducted within AFNI’s 3dClustSim were used to determine a combined voxel 

wise and cluster extent threshold to produce an α of .05. To explore overall group 

similarities in whole brain hippocampal functional connectivity, we conducted a conjunction 

analysis collapsing across all levels of trial type. A one sample t-test was conducted for OAs 

(p < .005 uncorrected, cluster extent k = 158). The results of this test were used as an 

inclusive mask for the same one sample t-test in YAs (p < .005, cluster extent k = 80). For 

group differences, a 2 (Group: OA and YA) x 4 (Trial type: IO, IC, IL, ICL) full factorial 

analysis of variance (ANOVA) conducted in SPM 8 was used to assess whole brain 

hippocampal functional connectivity. Group was a between- subjects factor that assumed 

independence bot not equal variance. Trial type was a within- subjects factor that did not 

assume independence of measurements or equal variance (p < .005 uncorrected, cluster 

extent k = 158). For all analyses, peak voxels were identified using the Talairach atlas. 

Regions within clusters were identified using the Talairach Daemon atlas within the WFU 

Pickatlas (Lancaster, Summerln, Rainey, Freitas, & Fox, 1997; Lancaster et al., 2000; 

Madjian, Laurienti, Kraft, & Burdette, 2003; Maldjian, Laurienti, & Burdette, 2004).

2.7 RESTING STATE ANALYSIS

The analysis of resting state data was conducted using the CONN functional connectivity 

toolbox (Whitfield-Gabrieli, & Nieto-Castanon, 2012; http://www.nitrc.org/projects/conn). 

For the resting state data we included the additional steps of despiking and included a linear 

detrending term in the model. Again, white matter signal, CSF signal, and motion 

parameters were entered as regressors of no interest in the analysis. The entire time series 

was modeled as a single block with a boxcar function that began with the first scan. The 

posterior cingulate cortex (PCC) was used as a seed to obtain a default mode network for 

each group (Fox et al., 2005). At the fixed effects level a semi-partial correlation was 

calculated between each voxel in the brain and the PCC. A default mode network mask was 

created for each group and within all participants using a threshold for significant voxels of 

p < .005 (uncorrected). Cluster thresholds were determined for each result using an FDR-

correction (YAs k = 174; OAs k = 143; OA > YA k = 321; YA > OA k = 274; all participants 

k = 185).

3. RESULTS

3.1 BEHAVIORAL RESULTS

3.1.1. OLD/NEW RECOGNITION—Due to the nature of the recognition test, the target 

items greatly outnumbered the lures. It is recommended in these conditions to use proportion 

correct instead of hits-minus-false-alarms (Macmillan & Creelman, 2005). Proportion 

correct was computed by taking the sum of hits and correct rejections and dividing by the 
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number of test trials. Primacy items were omitted from this calculation. An average of this 

value was computed from all 4 runs of each participant. A comparison of recognition 

performance between the old and young found no significant difference, t(20) = 1.537, p = .

14 (See Table 1). Therefore item recognition did not differ between young and old. Hit rates 

exceeded false alarm rates for both age groups. For older adults, hit and false alarm rates 

were .83(.09) and .03(.04), respectively. For young adults, hit and false alarm rates were .

77(.10) and .03(.02), respectively.

3.1.2. FEATURE MEMORY—The analysis of feature memory was based on the 

proportions of hit types: Item-Only (IO), Item and Color (IC), Item and Location (IL), or 

Item-Color-Location (ICL). Feature memory was analyzed with a 2x4 (Age by Hit Type) 

mixed factorial ANOVA (see Table 1). There was no main effect of Age (F < 1) and no Age 

by Hit Type interaction, F(1.77, 35.41) = 2.005, MSE = .048, p = .154. There was a 

significant main effect of Hit Type, F(1.77, 35.41) = 8.254, MSE = .199, p = .002, ηp
2 = .

292. A test of the least significant difference revealed that the proportion of IC hits was the 

lowest of the hit types, followed by IO hits. Highest were the proportions of IL and ICL hits; 

and these did not significantly differ. Therefore, feature memory did not differ between 

young and old.

3.2 CONNECTIVITY RESULTS

3.2.1 CONJUNCTION ANALYSIS–TASK-BASED CONNECTIVITY—The 

conjunction analysis revealed a widespread set of regions that were functionally connected 

to the hippocampus, including the bilateral hippocampus (in the conjunction contrast the 

seed region is correlated with itself; however, a large cluster extending throughout both 

hippocampi was significant), bilateral parahippocampal gyrus, bilateral middle temporal 

gyrus, bilateral superior temporal gyrus, left inferior temporal gyrus, bilateral fusiform 

gyrus, bilateral insula, bilateral Precuneus, left posterior cingulate, and left inferior parietal 

lobule (see Fig. 1 and Table 2).

3.2.2 ANOVA–TASK-BASED CONNECTIVITY—The results of the 2 x 4 ANOVA 

revealed a main effect of age on hippocampal functional connectivity, but no main effect of 

trial type and no significant interaction between age and trial type. To follow up on the main 

effect of age, we contrasted YAs greater than OAs and OAs greater than YAs to investigate 

how hippocampal connectivity was altered by age (see Fig. 2). Young adults showed greater 

hippocampal connectivity in two clusters: one cluster contained the putamen and caudate, 

and the other contained portions of the precentral gyrus and right middle frontal gyrus. Older 

adults also showed several clusters with greater hippocampal functional connectivity 

including the right precuneus, bilateral posterior cingulate, bilateral cuneus, and bilateral 

middle and superior temporal gyrus (see Table 2).

3.2.3 DEFAULT MODE NETWORK—The resting state analysis revealed 7 clusters that 

were significantly correlated with the PCC in YAs. One was centered in the PCC, two were 

centered within the MPFC, two occurred bilaterally along the middle temporal gyrus, and 

two were centered bilaterally in the angular gyrus (see Fig. 3). For OAs, 6 clusters were 

significantly correlated with the PCC including one large cluster that contained the PCC, 
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bilateral angular and supramarginal gyri, and the left middle temporal gyrus. Another cluster 

centered in the anterior cingulate gyrus, two centered bilaterally in the posterior middle 

temporal gyrus, and two centered in the middle/superior frontal and frontal pole. We also 

included all participants as a single group to calculate a “canonical” DMN. In this case, all 

the core components of the DMN were found including the PCC/precuneus, bilateral angular 

gyrus, medial prefrontal cortex, and hippocampus (see Fig 3). The canonical DMN was used 

as a mask to investigate whether group differences in task based activation occurred within 

the DMN.

To examine age-related changes in DMN, two contrasts were calculated, one for YAs greater 

than OAs and one for OAs greater than YAs. YAs showed significantly greater correlations 

to the PCC primarily in the MPFC; however, they also showed greater connectivity within 

the left temporal pole and the left middle frontal gyrus. OAs showed significantly greater 

connectivity in a cluster that included the bilateral anterior cingulate gyrus and bilateral 

superior frontal gyrus, as well as bilaterally in the supramarginal gyrus, bilaterally in the 

middle frontal gyrus, and in the right insula.

3.2.4 TASK-BASED CONNECTIVITY vs. DEFAULT MODE NETWORK—To assess 

whether OAs were more likely to show hippocampal functional connectivity with the DMN 

as compared to YAs, we masked the results of each task-based group effect (i.e., YA > OA 

and OA > YA) with the canonical DMN. Neither group revealed significant clusters within 

the DMN using a threshold of p < .005 (uncorrected) and cluster extents calculated with 

3dClustSim. Older adults, however, exhibited several regions in the task-based group 

contrast that are typically related to the DMN. To investigate this result further, we used a 

stringent, but slightly relaxed threshold (p < .005, cluster extent k = 10; for more 

information, see Lieberman & Cunningham, 2009) and found several regions only within the 

OAs’ DMN that were functionally connected to the hippocampus during task. These clusters 

included the left precuneus and right cuneus, as well as the left middle temporal gyrus, and 

right superior temporal gyrus (see Fig. 2 and Table 2). The same analysis was also 

conducted using the DMNs defined by each group and the same pattern of results were 

found.

3.2.5 CORRELATIONS WITH BEHAVIOR—Several approaches were taken to 

understand how changes in hippocampal connectivity relate to behavior. First, we used a 

mask created from the canonical DMN to calculate an average z score within the mask for 

each individual during the task. We then took an average across trial types and correlated 

each individual’s average z score with their old/new recognition accuracy. No significant 

relationship was found between task-based hippocampal connectivity within regions in the 

DMN and old/new recognition accuracy, r (20) = −.11, p = .63. To further examine possible 

relationships between task based hippocampal connectivity in each group’s DMN activity, 

we correlated each individual’s average z score by trial type with the percent correct for each 

trial type. Again, no significant correlations were found, all p’s > .1.

A similar logic was used to investigate relationships between regions in OAs’ DMN 

connectivity that were uniquely connected to the hippocampus. A mask was created of these 

regions and average z scores were obtained from these masks both across all trial types and 
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within each trial type. No significant correlations were observed between old/new 

recognition accuracy and average z scores collapsed across trial type, r (9) = .25, p = .46. 

Again, no significant correlations were obtained within each trial type; however, the 

strongest relationship found was between the ICL number correct and average z scores, r (9) 

= −.47, p = .14.

4. DISCUSSION

The primary goal of the study was to determine whether OAs show differential hippocampal 

connectivity to the DMN during relational encoding. According to the HCH, the 

hippocampus is functionally connected to the DMN during rest because it supports retrieval; 

however, during encoding, the hippocampus decouples from the DMN to support externally 

driven encoding processes (Huijbers et al., 2011). Our results suggest that OAs exhibit 

increased hippocampal connectivity to the DMN during relational encoding. Another goal of 

the study was to equate performance between OAs and YAs. Using a delay for YAs and 

training OAs on the importance of encoding the materials instead of focusing on the 

semantic decision, we were able to match both groups on all aspects of behavior during the 

task. We also used a seed region that has been shown to be equally activated by both groups 

during a very similar task. This choice was made to reduce potential biases in the analysis 

that may come from choosing a seed region which is already differentially utilized by each 

group. Therefore, changes in hippocampal functional connectivity are not due to effort, 

strength or quality of the memory trace, or hypothesized differences in the seed region, but 

instead are due to core changes in mnemonic encoding processes carried out in the brain.

During encoding, both groups exhibited hippocampal connectivity to a widespread set of 

regions. Several of these connected regions match well with a prior activation study using a 

similar paradigm, including the bilateral hippocampus/parahippocampal gyrus, bilateral 

middle temporal gyrus, left superior temporal gyrus, left inferior temporal gyrus, left 

fusiform gyrus and right insula (Morcom et al., 2003). Several meta-analyses of encoding 

effects have also found similar regions of activation including the medial temporal lobes, 

superior/middle temporal gyri, and fusiform gyrus (Cabeza & Nyberg, 2000; Kim, 2011). 

The fact that both OAs and YAs maintained a robust network of regions functionally 

connected to the hippocampus during encoding suggests that, to a large extent, a relational 

encoding network exists that is unaltered by age under conditions of equivalent behavioral 

performance between young and older adults.

The lack of a significant main effect of trial type and interaction between trial type and age 

in the imaging data suggests that OAs and YAs were consistently engaged in encoding the 

materials throughout the task. In the literature it is often found that as task difficulty 

increases, DMN activity decreases (e.g., McKiernan, Kaufman, Kucera-Thompson, & 

Binder, 2003; Persson et al., 2007). If memory success were related to effort on individual 

trials, then we would expect a main effect of trial type or interaction with trial type and age 

as the DMN was modulated across different levels of feature encoding.

Several regions typically associated with the DMN were functionally connected with the 

hippocampus during encoding, including the precuneus and left posterior cingulate (Mevel 
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et al., 2011). These regions are thought to be hub regions for the DMN and have been shown 

to exhibit subsequent forgetting effects (i.e., increased activity for later forgotten items; Kim, 

2011). It is difficult to specify why these regions are functionally connected to the 

hippocampus during relational encoding; however, these hub regions of the DMN may be 

important for some aspects of encoding. For example, it is likely that as a potential encoding 

strategy, participants retrieved either semantic or episodic memories to aid in encoding. 

While no specific instructions were given as to an encoding strategy, participants have been 

found to spontaneously employ elaborative strategies to aid in encoding (McDaniel & 

Kearney, 1984). It has also been shown when using a paradigm that requires a many-to-one 

mapping, in this case items (words) to repeated features (color and location), OAs and YAs 

do not differ in mediator-based encoding strategies which includes interactive imagery 

(Kuhlman & Touron, 2012).

Forming images may have been particularly useful in the current paradigm as a way to 

incorporate all aspects of the stimulus into a single mnemonic event. Addis et al. (2007) 

have shown that the posterior cingulate, precuneus, and left hippocampus are important for 

the construction of imaginative episodes. Further, while Kim (2011) found subsequent 

forgetting effects in the precuneus, the precuneus was also shown to be active during 

associative pictorial memory. Activation studies may generally be hampered from finding 

similar results as spontaneous strategy use, while somewhat consistent within individuals, 

often changes throughout the course of a study (McDaniel & Kearney, 1984). Therefore, 

simply looking at which parts of the brain are most active at encoding may average out this 

activity (however, see Uncapher et al. (2006) for a similar result). Since we used the left 

hippocampus as a seed to investigate functional connectivity, we are at a distinct advantage 

to find correlated activity in these regions.

Despite both OAs and YAs exhibiting a similar functionally connected network during 

encoding, there were distinct group differences. Younger adults demonstrated unique 

hippocampal connectivity to two clusters. One such connection included the putamen and 

caudate, while the other included the right middle frontal gyrus and precentral gyrus. The 

latter connection is typically associated with the dorsal attention network and likely 

represents YAs’ ability to efficiently recruit neural regions associated with externally 

oriented and goal-directed behavior (Fox et al., 2005; Grady et al., 2010). The caudate and 

putamen have also been implicated in learning and memory and maintain strong anatomical 

connections to the hippocampus, as well as anterior portions of the frontal lobe. Activity in 

basal ganglia regions is typically related to statistical learning (Seger & Cincotta, 2005). For 

the present study, it is important to note that neither of these clusters fell within the YAs’ 

group-defined DMN, suggesting that YAs are able to modulate efficiently between task and 

resting states (Grady et al., 2006; Grady et al., 2010; Sambataro et al., 2010; Sambataro et 

al., 2012).

Older adults also showed several clusters with greater hippocampal functional connectivity 

including the right precuneus, bilateral posterior cingulate, bilateral cuneus, and bilateral 

middle and superior temporal gyrus. In line with past research, we suggest that these 

additional connections within OAs’ DMN represent an inability to efficiently modulate 

between network states (Grady et al., 2006; Grady et al., 2010; Sambataro et al., 2010; 
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Sambataro et al., 2012). It will be important for future research to elucidate exactly why 

OAs show altered modulation between network states; however, it has been proposed that 

altered modulation may be due to compensatory processes associated with reductions in 

binding, reduced inhibitory processes in these regions, or a failure to divert attention away 

from internal states (Lustig et al., 2003; Persson et al., 2007). If altered network modulation 

in OAs was compensatory, positive correlations between behavioral performance and 

increased DMN connectivity would be expected. If altered network modulation in OAs was 

related to reduced inhibitory processes or due to attentional differences, negative correlations 

would be expected. Despite the fact that no significant behavioral correlations were found, 

the additional DMN recruitment is not likely due to attentional differences at encoding for 

two reasons. First, one strength of a beta-series correlation analysis is the ability to model 

and capture distinct stages of a cognitive operation (Rissman et al., 2004). Older adults’ 

greater hippocampal connectivity to the DMN was observed during the moment of encoding 

and while attention was focused on the presented materials. Secondly, OAs’ greater 

connectivity to the DMN occurred in the absence of behavioral differences. This result 

suggests that the two groups were attending to the goals of the task to a similar extent. 

Therefore, it is unlikely that the increased DMN activity was caused by an internally focused 

state.

Based on our findings, it is difficult to determine whether the increased DMN connectivity 

in OAs represents a compensatory process or whether it is a form of neural inefficiency 

reflecting reduced inhibitory processes. Younger adults exhibit connectivity to key regions of 

the dorsal attention network while OAs do not, and OAs exhibit increased connectivity to 

DMN regions where YAs do not. It is possible that OAs’ increased DMN connectivity 

compensates for the reduced connectivity to the dorsal attention network; however, it is also 

possible that increased DMN connectivity impairs the ability to recruit the dorsal attention 

network. The inability to support one of these options is a limitation in the current study, but 

prior work has provided evidence that increased activity in OAs’ DMN connectivity during 

tasks tends to relate to worse performance (Grady et al., 2010; Persson et al., 2007). The 

altered modulation between network states in OAs is, therefore, likely caused by reduced 

inhibitory processes or some other form of neural inefficiency.

Although we have concluded that OAs exhibit greater hippocampal connectivity to the DMN 

during encoding in the absence of behavioral differences, there are several limitations to the 

current study. First, this study used a relatively small sample size. Despite the small sample 

size, we were able to replicate several findings that have been consistently found in the 

literature. For example, our conjunction analysis revealed regions functionally connected to 

the hippocampus that have been reported in prior research including the medial and lateral 

temporal lobes, fusiform gyrus, and insula (Cabeza & Nyberg, 2000; Kim, 2011; Morcom et 

al., 2003). The analysis also revealed the key regions reported in prior studies examining the 

DMN. Second, in the behavioral data we observed no group differences in accuracy or 

reaction time; however, we did find a main effect of trial type. Taken together, these results 

suggest that the sample used in the current study was sufficient; however, it will be 

important for future research to establish the precise mechanisms mediating the altered 

hippocampal decoupling that occurs with age. Similarly, the lack of correlations between 

behavior and connectivity measures may be due to the relatively small sample size. Third, 
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resting state data was acquired after the memory task. The ordering of these tasks has been 

shown to have an impact on connectivity of the DMN (Groen et al., 2011). We adopted this 

methodology as a strategy to reduce the time between training and performance on the task. 

While we cannot separate out the effects of the prior task on the resting state data in the 

current analysis, we do not believe that collecting the resting state data before the task would 

alter the conclusions drawn from the study. We believe this to be the case because the 

regions uniquely connected to the hippocampus in OAs are not only regions within their 

self-defined DMN, but also regions that are well established as key components of the 

DMN.

In conclusion, the current study investigated whether hippocampal connectivity is altered by 

age during a relational encoding task and tested the hypothesis that OAs, as compared to 

YAs, exhibit greater hippocampal connectivity to regions typically associated with the 

DMN. Moreover, the current study addressed several interpretational weaknesses that exist 

in the prior literature, including matching of behavioral performance between age groups, 

definition of functional networks, and utilization of an event-related approach to task-based 

functional connectivity. The main findings support the hypothesis that OAs, due to altered 

network modulation, exhibit hippocampal functional connectivity to regions within their 

DMN during relational encoding. In line with the hippocampal coupling hypothesis, we also 

found that YAs are able to efficiently modulate between networks states (Huijbers et al., 

2011). This study provides novel information on the nature of connectivity changes that 

occur with age; however, it will be important for future research to determine the precise 

mechanisms mediating the imbalance and how these changes impact behavior.
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Highlights

• This study investigated the hippocampal coupling hypothesis (HCH) in 

aging.

• The hippocampus is a core component of the default mode network 

(DMN).

• The HCH predicts hippocampal decoupling from the DMN during 

encoding.

• Our results revealed that older adults’ exhibit reduced decoupling 

during encoding.

• Such age-related changes in decoupling likely reflect reductions in 

inhibitory processes with age.
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Figure 1. 
Regions functionally connected to the hippocampus to the same extent in both older and 

younger adults. Note that the left hippocampal seed is correlated with itself in this contrast. 

These large clusters included regions in the bilateral hippocampus, bilateral temporal gyrus, 

bilateral precuneus, and left posterior cingulate. (p < .005 uncorrected, cluster extent k = 80)
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Figure 2. 
Results from the main effect of age. Red = A contrast of younger greater than older adults. 

Regions include the putamen, caudate, and middle and precentral gyrus (p < .005 

uncorrected, cluster extent k = 158). Yellow = A contrast of older greater than younger 

adults. Regions include posterior cingulate, parahippocampal gyrus, hippocampus, and 

caudate tail (p < .005 uncorrected, cluster extent k = 158). Blue = Regions within the default 

mode network identified using all participants that exhibit greater hippocampal connectivity 

in older adults as compared to younger adults. Regions include the precuneus, cuneus, and 

middle and superior temporal gyrus (p < .005 uncorrected, cluster extent k = 10).
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Figure 3. 
The default mode network identified using all participants (p < .005 uncorrected, FDR-

corrected cluster extent k =185) and by using the posterior cingulate cortex as a seed (Fox et 

al., 2005).
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Table 1

Participant characteristics

Young Adults Older Adults

N 11 11

Age 21.29 (2.21) 73.94 (7.02)

Education 14.60 (1.14) 17.90 (1.64)

MMSE 29.6 (.7) 29.5 (.9)

Shipley 29.2 (5.4) 34.7 (4.2)

Digit Span 16.3 (2.4) 16.7 (3.3)

LM Immediate 17.4 (3.2) 16.2 (2.7)

LM Delay 16.0 (2.5) 15.4 (2.2)

Recognition

 Old/New Accuracy .84 (.06) .88 (.06)

Proportion of hit types

 IO .19 (.09) .26 (.10)

 IC .17 (.05) .15 (.06)

 IL .26 (.09) .31 (.12)

 ICL .37 (.09) .28 (.13)

Reaction Time

 IO 2022 (650) 2158 (542)

 IC 2065 (771) 2294 (746)

 IL 2066 (694) 2301 (666)

 ICL 2034 (739) 2267 (728)

Notes: All data are means and standard deviations (in parentheses). MMSE = Mini-mental Status Exam. Shipley = Shipley Vocabulary Test. Digit 
Span = Digit Span subtest from the Wechsler Adult Intelligence Scale–Revised. LM Immediate = Logical Memory Immediate Recall subtest from 
the Wechsler Memory Scale–Revised. LM Delay = Logical Memory Delayed Recall from the Wechsler Memory Scale–Revised. IO = Item Only. 
IC = Item and Color. IL = Item and Location. ICL = Item, Color, and Location.
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Table 2

Clusters significantly correlated with the hippocampus during task, both common to and differentially effected 

by age

Contrast (Cluster size) Peak Voxel (X, Y, Z) Peak T Regions in cluster Brodmann area

Conjunction of OA and YA

 (13285) −28, −12, −18 21.93 L Hippocampus

26, −20, −16 14.43 R Parahippocampal gyrus 27

26, −8, −18 11.32 R Amygdala

 1095 −52, −46, 10 5.81 L Middle temporal gyrus 21

−44, −74, 22 5.43 L Middle temporal gyrus 39

−56, −42, 2 4.92 L Middle temporal gyrus 22

 (112) 52, −38, 4 3.87 R Superior temporal gyrus 22

50, −30, 0 3.43 R Superior temporal gyrus 41

50, −30, 12 3.32 R Superior temporal gyrus 41

OA > YA

 (917) 30, −62, 10 4.56 R Posterior cingulate 30

26, −52, 16 4.54 R Posterior cingulate 30

34, −50, 8 4.39 R Parahippocampal gyrus 30

 1054 −32, −42, 6 4.31 L Hippocampus

−26, −44, 22 4.28 L Caudate tail

YA > OA

 (318) −22, 16, 2 4.25 L Putamen

−10, 8, 8 3.52 L Caudate body

−12, 22, 14 3.31 L Caudate body

 (391) 40, 0, 58 4.09 R Precentral Gyrus 6

46, −8, 60 3.83 R Precentral Gyrus 4

30, −2, 58 3.54 R Middle Frontal Gyrus 6

OA > YA
masked with DMN

 (14) 26, −60, 12 3.93 R Precuneus 31

 (31) −22, −64, 12 3.38 L Cuneus 17

−22, −74, 12 3.17 L Cuneus 17

 (15) −62, −56, 12 3.38 L Middle temporal gyrus 21

 (10) 66, −36, 8 3.02 R Superior temporal gyrus 22

YA > OA
masked with DMN

(none)

Notes. Coordinates in Montreal Neurological Institute standard space. Regions and Brodmann areas (approximate) obtained using Tailarach atlas.
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