12,617 research outputs found

    The young cluster NGC 2282 : a multi-wavelength perspective

    Full text link
    We present the analysis of the stellar content of NGC~2282, a young cluster in the Monoceros constellation, using deep optical BVIBVI and IPHAS photometry along with infrared (IR) data from UKIDSS and SpitzerSpitzer-IRAC. Based on the stellar surface density analysis using nearest neighborhood method, the radius of the cluster is estimated as ∼\sim 3.15\arcmin. From optical spectroscopic analysis of 8 bright sources, we have classified three early B-type members in the cluster, which includes, HD 289120, a previously known B2V type star, a Herbig Ae/Be star (B0.5 Ve) and a B5 V star. From spectrophotometric analyses, the distance to the cluster has been estimated as ∼\sim 1.65 kpc. The KK-band extinction map is estimated using nearest neighborhood technique, and the mean extinction within the cluster area is found to be AV_V ∼\sim 3.9 mag. Using IR colour-colour criteria and Hα_\alpha-emission properties, we have identified a total of 152 candidate young stellar objects (YSOs) in the region, of which, 75 are classified as Class II, 9 are Class I YSOs. Our YSO catalog also includes 50 Hα_\alpha-emission line sources, identified using slitless spectroscopy and IPHAS photometry data. Based on the optical and near-IR colour-magnitude diagram analyses, the cluster age has been estimated to be in the range of 2 −- 5 Myr, which is in agreement with the estimated age from disc fraction (∼\sim 58\%). Masses of these YSOs are found to be ∼\sim 0.1−-2.0 M⊙_\odot. Spatial distribution of the candidate YSOs shows spherical morphology, more or less similar to the surface density map.Comment: 16 pages, 19 Figure

    Nuclear effects in Neutrino Nuclear Cross-sections

    Full text link
    Nuclear effects in the quasielastic and inelastic scattering of neutrinos(antineutrinos) from nuclear targets have been studied. The calculations are done in the local density approximation which take into account the effect of nucleon motion as well as renormalisation of weak transition strengths in the nuclear medium. The inelastic reaction leading to production of pions is calculated in a Δ\Delta dominance model taking into account the renormalization of Δ\Delta properties in the nuclear medium.Comment: 4 pages,3 figures, Ninth International Workshop on Neutrino Factories, Superbeams and Betabeams (NuFact07), August 6-11, 2007, Okayama University, Okayama, Japa

    A robot design for wind generator support structure inspection

    Get PDF
    In recent time, the development of wind tower inspection has been very crucial for the overall performance of the wind turbine. In order to maintain, monitor and determine the life span of the tower, an investigation of robot design is discussed. It presents how to design and construct a robot that can climb the tower and rotate 360° . A ring system which is in a circular shape robot is designed that allows the device to fit in the structure of the wind generator tower. The rotational module is designed to allow the wheels to rotate and be able to go in a circular motion. Also it is designed with a suspension that allows the robot to go through any obstacle. This paper also presents the FEA spring stress analysis and Simulink control system model to find the optimal parameters that are required for the wind tower climbing robot

    Global NLO Analysis of Nuclear Parton Distribution Functions

    Full text link
    Nuclear parton distribution functions (NPDFs) are determined by a global analysis of experimental measurements on structure-function ratios F_2^A/F_2^{A'} and Drell-Yan cross section ratios \sigma_{DY}^A/\sigma_{DY}^{A'}, and their uncertainties are estimated by the Hessian method. The NPDFs are obtained in both leading order (LO) and next-to-leading order (NLO) of \alpha_s. As a result, valence-quark distributions are relatively well determined, whereas antiquark distributions at x>0.2 and gluon distributions in the whole x region have large uncertainties. The NLO uncertainties are slightly smaller than the LO ones; however, such a NLO improvement is not as significant as the nucleonic case.Comment: 3 pages, LaTeX, 4 eps files, to be published in the AIP proceedings of the 9th International Workshop on Neutrino Factories, Superbeams and Betabeams (NuFact07), Okayama, Japan, August 6 - 11, 2007. A code for calculating our nuclear parton distribution functions and their uncertainties can be obtained from http://research.kek.jp/people/kumanos/nuclp.htm

    Limits on monopole fluxes from KFG experiment

    Get PDF
    The nucleon decay experiment at KGF at a depth of 2.3 Km is eminently suited for the search of Grand Unified theory (GUT) monopoles, whose velocities at the present epoch are predicted to be around 0.001C. At this depth the cosmic ray background is at a level 2/day in the detector of size 4m x 6m x 3.7m and one can look for monopoles traversing the detector in all directions, using three methods, i.e., (1) dE/dx (ionization); (2) time of flight and (3) catalysis of nucleon decay. The detector is composed of 34 layers of proportional counters arranged in horizontal planes one above the other in an orthogonal maxtrix. Each of the 1594 counters are instrumented to measure ionization in the gas (90% Argon + 10% Methane) as well as the time of arrival of particles
    • …
    corecore