616 research outputs found

    Magnetopolaronic effects in electron transport through a single-level vibrating quantum dot

    Get PDF
    Magneto-polaronic effects are considered in electron transport through a single-level vibrating quantum dot subjected to a transverse (to the current flow) magnetic field. It is shown that the effects are most pronounced in the regime of sequential electron tunneling, where a polaronic blockade of the current at low temperatures and an anomalous temperature dependence of the magnetoconductance are predicted. In contrast, for resonant tunneling of polarons the peak conductance is not affected by the magnetic field.Comment: 7 pages, 2 figure

    The sonic analogue of black hole radiation

    Full text link
    A microscopic description of Hawking radiation in sonic black holes has been recently presented (Giovanazzi S 2005 Phys. Rev. Lett. 94 061302). This exactly solvable model is formulated in terms of one-dimensional scattering of a Fermi gas. In this paper, the model is extended to account possible finite size effects of a realistic geometry. The flow of particles is maintained by a piston (i.e. an impenetrable barrier) moving slowly towards the sonic horizon. Using existing technologies the Hawking temperature can be of order of a few microkelvin in a realistic experiment.Comment: 14 pages, 7 figures, submitted to Journal of Physics B: Atomic, Molecular & Optical Physic

    Ac Josephson Effect in Topological Josephson Junctions

    Get PDF
    Topological superconductors admit zero-energy Majorana bound states at their boundaries. In this review article, we discuss how to probe these Majorana bound states in Josephson junctions between two topological superconductors. In the absence of an applied bias, the presence of these states gives rise to an Andreev bound state whose energy varies 4π4\pi-periodically in the superconducting phase difference. An applied voltage bias leads to a dynamically varying phase according to the Josephson relation. Furthermore, it leads to dynamics of the occupation of the bound state via its non-adiabatic coupling to the continuum. While the Josephson relation suggests a fractional Josephson effect due to the 4π4\pi-periodicity of the bound state, its observability relies on the conservation of the occupation of the bound state on the experimentally probed time scale. We study the lifetime of the bound state and identify the time scales it has to be compared to. In particular, we are interested in signatures of the fractional Josephson effect in the Shapiro steps and in current noise measurements. We also discuss manifestations of the zero-energy Majorana states on the dissipative subgap current.Comment: 19 pages, 12 figure

    Full counting statistics of strongly non-Ohmic transport through single molecules

    Full text link
    We study analytically the full counting statistics of charge transport through single molecules, strongly coupled to a weakly damped vibrational mode. The specifics of transport in this regime - a hierarchical sequence of avalanches of transferred charges, interrupted by "quiet" periods - make the counting statistics strongly non-Gaussian. We support our findings for the counting statistics as well as for the frequency-dependent noise power by numerical simulations, finding excellent agreement.Comment: 4+ pages, 2 figures; minor changes, version published in Phys. Rev. Let

    Critical conductance of a one-dimensional doped Mott insulator

    Full text link
    We consider the two-terminal conductance of a one-dimensional Mott insulator undergoing the commensurate-incommensurate quantum phase transition to a conducting state. We treat the leads as Luttinger liquids. At a specific value of compressibility of the leads, corresponding to the Luther-Emery point, the conductance can be described in terms of the free propagation of non-interacting fermions with charge e/\sqrt{2}. At that point, the temperature dependence of the conductance across the quantum phase transition is described by a Fermi function. The deviation from the Luther-Emery point in the leads changes the temperature dependence qualitatively. In the metallic state, the low-temperature conductance is determined by the properties of the leads, and is described by the conventional Luttinger liquid theory. In the insulating state, conductance occurs via activation of e/\sqrt{2} charges, and is independent of the Luttinger liquid compressibility.Comment: 13 pages, 3 figures. Published versio

    Weak Localization and Antilocalization in Topological Insulator Thin Films with Coherent Bulk-Surface Coupling

    Full text link
    We evaluate quantum corrections to conductivity in an electrically gated thin film of a three-dimensional (3D) topological insulator (TI). We derive approximate analytical expressions for the low-field magnetoresistance as a function of bulk doping and bulk-surface tunneling rate. Our results reveal parameter regimes for both weak localization and weak antilocalization, and include diffusive Weyl semimetals as a special case.Comment: After publication, we have noticed and corrected two small but potentially misleading typographic errors in Eqs. (2.27) and (2.29), where the definitions of \tau_s and \tau_v were mistakenly switched. Once these typographic errors are fixed, all the results remain unchanged. An Erratum will be published in PR

    Effect of disorder on a graphene p-n junction

    Get PDF
    We propose the theory of transport in a gate-tunable graphene p-n junction, in which the gradient of the carrier density is controlled by the gate voltage. Depending on this gradient and on the density of charged impurities, the junction resistance is dominated by either diffusive or ballistic contribution. We find the conditions for observing ballistic transport and show that in existing devices they are satisfied only marginally. We also simulate numerically the trajectories of charge carriers and illustrate challenges in realizing more delicate ballistic effects, such as Veselago lensing.Comment: (v2)Version accepted to Phys. Rev.

    On the magnetization of two-dimensional superconductors

    Full text link
    We calculate the magnetization of a two-dimensional superconductor in a perpendicular magnetic field near its Kosterlitz-Thouless transition and at lower temperatures. We find that the critical behavior is more complex than assumed in the literature and that, in particular, the critical magnetization is {\it not} field independent as naive scaling predicts. In the low temperature phase we find a substantial fluctuation renormalization of the mean-field result. We compare our analysis with the data on the cuprates.Comment: 8 pages, 3 figure

    Numerical renormalization group calculation of near-gap peaks in spectral functions of the Anderson model with superconducting leads

    Full text link
    We use the numerical renormalization group method (NRG) to investigate a single-impurity Anderson model with a coupling of the impurity to a superconducting host. Analysis of the energy flow shows, in contrast to previous belief, that NRG iterations can be performed up to a large number of sites, corresponding to energy differences far below the superconducting gap. This allows us to calculate the impurity spectral function very accurately for frequencies near the gap edge, and to resolve, in a certain parameter regime, sharp peaks in the spectral function close to the gap edge.Comment: 18 pages, 7 figures, accepted for publication in Journal of Physics: Condensed Matte

    Theory of preparation and relaxation of a p-orbital atomic Mott insulator

    Full text link
    We develop a theoretical framework to understand the preparation and relaxation of a metastable Mott insulator state within the first excited band of a 1D optical lattice. The state is loaded by "lifting" atoms from the ground to the first excited band by means of a stimulated Raman transition. We determine the effect of pulse duration on the accuracy of the state preparation for the case of a Gaussian pulse shape. Relaxation of the prepared state occurs in two major stages: double-occupied sites occurring due to quantum fluctuations initially lead to interband transitions followed by a spreading of particles in the trap and thermalization. We find the characteristic relaxation times at the earliest stage and at asymptotically long times approaching equilibrium. Our theory is applicable to recent experiments performed with 1D optical lattices [T. M\"uller, S. F\"olling, A. Widera, and I. Bloch, Phys. Rev. Lett. \textbf{99}, 200405 (2007)].Comment: 27 pages, 23 figures: Edited figures, added reference
    corecore