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We propose the theory of transport in a gate-tunable graphene p-n junction, in which the gradient of the
carrier density is controlled by the gate voltage. Depending on this gradient and on the density of charged
impurities, the junction resistance is dominated by either diffusive or ballistic contribution. We find the con-
ditions for observing ballistic transport and show that in existing devices they are satisfied only marginally. We
also simulate numerically the trajectories of charge carriers and illustrate challenges in realizing more delicate
ballistic effects, such as Veselago lensing.
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I. INTRODUCTION AND MAIN RESULTS

A. Definition of the model

Graphene is a new material whose unique electronic
structure endows it with many unusual properties.1 A mono-
layer graphene is a gapless two-dimensional semiconductor
with a massless electron-hole symmetric spectrum near the
corners of the Brillouin zone, ��k�= ��v�k�, where v
�108 cm /s. The concentration of these “Dirac” quasiparti-
cles can be accurately controlled by the electric field
effect.2,3 An exciting experimental development is the ability
to apply such fields locally, by means of submicron gates.
Using this technique, graphene p-n junctions �GPNJs� have
been recently demonstrated.4–7

Within idealized treatments that neglect disorder and elec-
tron interactions, GPNJs were predicted to display a number
of intriguing phenomena. They include Klein tunneling,8–10

Veselago lensing,11 microwave-induced12,13 and Andreev14,15

reflection, as well as strong ballistic magnetoresistance.9,16

Both quantitative and qualitative changes to these phenom-
ena are expected when interactions and disorder are included
in the model. For example, long-range Coulomb interactions
lead to nonlinear screening in GPNJ, which can modify its
resistance substantially.17 The purpose of this paper is to in-
vestigate how the junction resistance is affected by disorder.
We show that in existing GPNJ, this effect is, indeed, strong
and we suggest what can be done to reduce it.

We consider a generic model of an electrostatic GPNJ, in
which a grounded graphene sheet in the x-y plane is con-
trolled by two coplanar metallic gates with voltages V1 and
V2. The gates are separated by distance b from graphene and
a distance 2d from each other. Under a symmetric gate bias,
V2=−V1=V �Fig. 1�, the graphene carrier density n�x� varies
linearly in the middle of the junction �x=0�,

n�x� � n�x, �x� � D � max�b,d� , �1�

and tends to its limiting values �n0 at �x��D. Here, n� is the
density gradient18 at x=0.

Our assumptions about disorder require a brief discussion.
At present, the nature of disorder in graphene is not com-
pletely understood.1 Our knowledge of it derives mainly
from the measurements of the transport mobility �. For a

sample with a macroscopically homogeneous carrier concen-
tration n and resistivity �, the mobility is defined by

��n� =
1

e�n���n�
. �2�

A remarkable fact that holds true for nearly all experiments
on graphene is that ��n� is observed to be approximately
constant away from the charge-neutrality point, n=0. Rather
than entering a debate on the microscopic origin of this be-
havior, we adopt it on phenomenological grounds. We can do
so because the derivation below applies regardless of the
exact microscopic origin of the constant mobility.

It is convenient to define parameter ni of dimension of
concentration by

ni =
e

h�
= const, �3�

then the resistivity ��n� can be written as

��n� =
h

e2

ni

�n�
, �n� � ni. �4�

Below we will also need the carrier mean free path l, which
is related to the conductivity in a standard way:

�−1 =
e2

h
�2kFl� , �5�

where kF�n�=		�n� is the Fermi wave vector. Using Eq. �4�,
we find

l�n� =
kF

2	ni
, �n� � ni. �6�

The inequality �n��ni in Eqs. �4� and �6� is stipulated by
another phenomenological observation: the saturation of ��n�
at a finite value �max
h /e2 at low carrier densities.1,19

As we mentioned, our main results can be obtained with-
out knowing the microscopic origin of Eq. �4� and �max. Nev-
ertheless, it is useful to have in mind a concrete model that
may clarify the physical meaning of parameter ni. One such
actively discussed model assumes that the mobility is limited
by charged impurities located in close proximity to the
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graphene sheet.20,21 An impurity of a unit charge acts as a
scatterer with the transport cross section20–23


 = 2	c2���/kF, �7�

where c2=	�2 /2 for ��1 �graphene on large-� substrate�
and c2
0.1 for ��1 �SiO2 substrate�.24 Here, �=e2 /��v is
the dimensionless strength of Coulomb interactions and � is
the effective dielectric constant. If the charged impurities
have an average surface concentration Ni, then l=1 /Ni
.
Comparing this with Eq. �6�, one indeed arrives at Eq. �3�
with

ni = c2���Ni. �8�

This argument has a considerable appeal and is supported by
recent experiments.25

B. Results

To isolate the transport properties specific to GPNJ, we
follow the procedure introduced by experimentalists5 and
compute the difference of the total resistance Rtot of the de-
vice in the p-n �Fig. 1�a�� and the n-n states:

R � �Rtot�V2=−V1=V − �Rtot�V2=V1=V. �9�

This allows us to largely eliminate the contribution of the
bulk regions �x�D. Our results are then as follows. We find
two qualitatively different regimes, depending on the magni-
tude of the dimensionless parameter

� =
�n��
ni

3/2 . �10�

For small � �high disorder or low density gradient�, the
transport is purely diffusive, and the resistance of the GPNJ
is given by

� � 1: R � 2
h

e2

ni

�n��W
ln��2/3�� , �11�

where W is the width of the device in the y direction and � is
defined by

� � �n��1/3D � 1. �12�

The condition ��1, which is usually satisfied in
experiment,4–7 ensures that the density n�x� varies across the

GPNJ slowly enough, D=max�d ,b��kF
−1�n0�, to justify its

evaluation by means of classical electrostatics.17 Equation
�11� is written for �2/3��1, i.e., for n0�ni, when the GPNJ
is still well defined despite random fluctuations of the elec-
tron density n�x ,y� due to disorder.

In the opposite regime �large � or low disorder�, the
GPNJ resistance

� � 1: R = Rbal + Rdif �13a�

is the sum of the ballistic and the diffusive contributions,

Rbal =
h

e2

c1

�1/6�n��1/3W
, c1 � 1.0, �13b�

Rdif � 2
h

e2

ni

�n��W
ln4	�

�4/3 �, � �
�4/3

4	
. �13c�

Equations �11� and �13c� are valid with logarithmic
accuracy26 and match at �
3. The ballistic contribution
dominates, R�Rbal�Rdif, provided

� � �* = �2�1/6

c1
ln4	�

�*
4/3 ��3/2

. �14�

Realistically, the logarithmically “large” threshold �* here is
about 10. In recent experiments,5,7 � is of the same order of
magnitude. So, they are presumably in the crossover region
Rbal
Rdif. To move deeper into the ballistic regime, one
needs either a larger concentration gradient �n�� or a higher
mobility �.

The rest of the paper is divided into three sections. In Sec.
II, we give the analytical derivation of the above results. In
Sec. III, we illustrate them by numerical simulations. Finally,
in Sec. IV, we discuss their implications for ongoing experi-
mental work.

II. DERIVATION

This section is organized as follows. First, we consider
electrostatics of the gate-tunable junction. Next, we study
separately the ballistic and the diffusive contributions to the
transport. Finally, we combine them to arrive at a total ex-
pression for the resistance of a GPNJ.

A. Electrostatics

Electron density in graphene is related to the electrostatic
potential ��x ,z� by the Gauss law, n�x�= �� /4	e��z��x ,
+0�. To find � and n, we can treat graphene as an ideal
conductor. �For the discussion of this approximation, see
Refs. 17 and 27.� The calculation can be done using the
conformal mapping

2w + lna + w

a − w
� =

	

b
�x + iz� , �15�

which transforms the upper half-plane z0 with the branch
cuts along the gates �cf. Fig. 1�a�� to the upper half-plane of
a complex variable w=w�x ,z�. Here, a is found from

−d d x

b
zV1 = −V V2 = +V

Φ = 0

(a)

−d d x

n0

n

−n0

(b)

−d d x

n0

n

−n0

(c)

FIG. 1. �a� Device geometry. Graphene �thin line� lies in the z
=0 plane. The gates �thick lines� are in the z=b plane. �b� Electron
density profile for d=0.77b and the symmetric gate bias V2=−V1

=V. �c� Same for d=6.00b.
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	a�a + 1� + ln�	a + 	a + 1� = 	d/2b . �16�

The graphene sheet, the left gate, and the right gate are
mapped onto the intervals −a�w�a, w�−a, and wa,
respectively, of the real axis. Therefore, the sought potential
is given by

��x,z� = �1/	�Im�V1 ln�a + w� − V2 ln�a − w�� . �17�

Using these equations and simple algebra, we find

n�x� =
�

8	eb

�V2 + V1�a + �V2 − V1�w�x�
a�a + 1� − w2�x�

, �18�

where w�x� stands for the real quantity w�x ,z=0� defined by
Eq. �15�. For the symmetric gate bias, we obtain

n�x� =
n0�V�w�x�

a�a + 1� − w2�x�
, V2 = − V1 = V , �19�

in which case the density gradient at x=0 is given by

n� =
	

2b

n0�V�
�1 + a�2 , n0�V� =

�V

4	eb
. �20�

Two examples of n�x� computed according to Eqs. �15� and
�19� are plotted in Figs. 1�b� and 1�c�. In both cases, the
linear dependence n�n�x extends up to �x�
D. However,
for widely separated gates �Fig. 1�c��, the local density gra-
dient sharply increases near the gate edges. In those regions,
n�x� is dictated by the nearest gate �similar to the case stud-
ied in Ref. 17�, and one can show that28

max
x
�dn

dx
� �

�

27eb2 max��V1�, �V2��, d � b . �21�

B. Ballistic resistance

The resistance Rbal of a clean GPNJ is related9 to the
electric field at the p-n interface. To compute this field, one
has to go beyond electrostatics of ideal conductors and take
into account nonlinear screening at the p-n interface. Equa-
tion �13b� for Rbal was derived from this analysis in Ref. 17.
In the case �
1, the result for Rbal can be qualitatively
understood as the ballistic resistance of a system with
WkF(n�xtun�) transmitting channels:

Rbal 

h

e2

1

kFW



h

e2

xtun

W
. �22�

Here, the effective “width” of the p-n interface

xtun = �−1/6�n��−1/3 �23�

is found from the condition that it is of the order of the
quantum uncertainty in the quasiparticle coordinate,

xtun 
 kF
−1
„n�xtun�… . �24�

�In Ref. 17, xtun was denoted by xTF.� The quasiparticles that
manage to get inside the strip �x��xtun cross the p-n bound-
ary without tunneling suppression.9

Below we consider the resistance �9� of a symmetrically
biased GPNJ, V2=−V1=V. The transport is either diffusive or
ballistic depending on the gradient �10�.

C. Purely diffusive transport: �™1

The derivation is based on treating �(n�x�) as the local
x-dependent resistivity. This is justified provided the concen-
tration gradient is sufficiently small, such that

l�n���xn� � n . �25�

Using Eq. �6�, one can easily check that for ��1, the con-
dition �25� is satisfied at all �x��xflc, where xflc is defined by

xflc = ni/�n�� , �26�

see also Fig. 2�a�. At such distances, Eq. �4� is still valid. On
the other hand, in the strip �x��xflc, we have �n�x���ni, so
that Eq. �4� does not apply.29 Since the transport remains
diffusive in the strip �x��xflc �certainly, it cannot be ballistic
because of strong disorder30�, we can assume that the corre-
sponding local resistivity is of the order of its bulk value
�max
h /e2 at the charge-neutrality point. This allows us to
estimate the resistance of this region as

Rflc 
 �max
xflc

W
. �27�

According to our definition �9�, the GPNJ resistance is the
difference of the total resistances in the p-n and n-n configu-
rations. It is convenient to write it as R=Rdif�0�, where

Rdif�x� =
2

W
�

x

�

dx̃����x̃��V1=−V2
− ���x̃��V1=+V2

� . �28�

Using Eqs. �15�, �19�, and �4�, and the expression

n�x� =
n0�V�a

a�a + 1� − w2�x�
, V1 = V2 = V , �29�

for the charge profile in the n-n state that follows from Eq.
�18�, the integral in Eq. �28� can be transformed to

Rdif�x� � 2
h

e2

ni

�n��W
ln� n0

�a + 1��n��x�, x � xflc. �30�

The total resistance is Rdif�xflc�+Rflc, which leads to Eq.
�11�. Note that the effect of Rflc is only to modify the numeri-
cal factor in the argument of the logarithm in the final ex-
pression. For sufficiently long junctions, this logarithm is
large �cf. Eq. �11�� and so our crude estimate of Rflc is quite
acceptable. This can be understood by realizing that in a long
junction, the resistance of the �x��xflc strip is much smaller
than that of the rest of the system. In shorter devices, the

x

D0

0 D

x

x flc

x flc xbal

x tun

x tun

β >> 1:

β << 1:

FIG. 2. A sketch of the characteristic length scales in a GPNJ for
the limiting cases of small and large �. Only the x0 side of the
junction is shown. The diffusive region is hatched. Parameters xtun

and xflc are indicated by the dashed lines in the regimes ��1 and
��1, respectively, as they do not have direct physical meaning in
these cases.
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contribution of this “fluctuating strip” can be significant, and
so a more accurate evaluation of Rdif in Eq. �28� may be
necessary. For example, one may want to perform the inte-
gration in Eq. �28� numerically using the experimentally
measured dependence ��n� instead of Eq. �4�.

D. Coexistence of ballistic and diffusive transport: �š1

Here, the carrier density n�x� varies with x more rapidly.
As a result, the diffusive approximation breaks down inside
the strip �x��xbal, whose width is given by the condition
l�n�xbal��
xbal, i.e.,

xbal 

�n��

4	ni
2 . �31�

The carrier density at x=xbal is still high, n�xbal��ni, so that
at �x � xbal Eq. �4� applies. Thus, the diffusive contribution
to the resistance is Rdif�Rdif�xbal�, leading to Eq. �13c�. �The
extra factor �−2 under the logarithm in Eq. �13c� vs Eq. �11�
comes from xbal
�2xflc. Note, however, that xflc has no di-
rect physical meaning if ��1.�

In contrast, within the strip �x��xbal, the transport is bal-
listic: the local mean free path l�n�x�� nominally exceeds �x�,
so that quasiparticles reach the p-n interface largely without
experiencing impurity scattering. We now note that the tun-
neling strip �31� is located deep inside this ballistic region,

xtun 

4	

�1/6
xbal

�4/3 � xbal, �32�

see also Fig. 2�b�. Therefore, the transmission problem is
reduced to the clean case,17 yielding Eq. �13b� for the ballis-
tic resistance Rbal. Due to the large logarithmic factor in Rdif
�Eq. �13c��, the ballistic contribution in Eq. �13a� starts to
dominate the diffusive one only when � exceeds a logarith-
mically large threshold �* �Eq. �14��.

III. NUMERICAL SIMULATIONS

In this section, we illustrate and support the above ana-
lytical results by numerical simulations. In particular, we
show that the criterion ���* �Eq. �14�� guarantees only that
the total resistance of the junction R is given by the formula
derived for a disorder-free GPNJ �Eq. �13b��. Realization of
other ballistic phenomena may demand cleaner systems �see
below�.

To get intuition above the nature of transport at ��*,
we studied semiclassical trajectories of the quasiparticles in a
GPNJ by numerically solving the following relativistic equa-
tions of motion:

ṙ = vp/�p�, ṗ = ����r�� . �33�

For illustrative purposes, we adopted the potential

��r� = − sgn�x�		n��x� + �
j

Qj

	�r − r j�2 + zj
2

. �34�

Here, the first term models the potential induced by the
gates17 and the second term represents the potential created

by impurity charges Qj = �1 with coordinates �r j ,zj�. This
expression assumes �=e2 /�=�=v=1 and neglects, for sim-
plicity, the screening of these impurities by the electrons in
graphene. We estimate that this entails c2
1 in Eq. �8�.

Other parameters of the simulation were as follows. The z
coordinates of all the impurities were set to zj =0.01 in some
arbitrary length units. The in-plane coordinates of the impu-
rities were chosen randomly inside the square �x�, �y��100
straddling the p-n interface. The total impurity number was
300, so that ni
300 /2002=0.0075. In the field of view �x�
�60, �y��80 of Fig. 3, 126 of these impurities are seen. The
density gradient was set to be n�=0.25, which makes param-
eter � quite large: �=0.25 /ni

3/2
400.
In Fig. 3, we show 51 electron trajectories computed by

standard numerical algorithms.31 The energy for all trajecto-
ries was fixed at zero and the starting point was set to
x=x0=−60, y=0. The polar angles of the initial velocities
formed an equidistant set spanning the interval
�−	 /5,	 /5�.

From Eq. �31�, we estimate xbal
350. Therefore, the in-
jection point is deep inside the ballistic strip, x0�xbal. Simul-
taneously, x0�xtun�2 �cf. Eq. �23��, so that the semiclassi-
cal approximation �33� is legitimate.

As evident from Fig. 3, the average distance between col-
lisions of quasiparticles with impurities exceeds the distance
x0 from the injection point to the interface. Thus, in agree-
ment with the above estimates, electrons can propagate
across the interface according to the formulas derived for the
disorder-free system.9,17 A closely related observation is that
for the chosen parameters, there are many points along the
interface not “blocked” by the impurities.

On the other hand, even for such large �, there is no
evidence for the recently proposed11 Veselago lensing effect:
a self-focusing of holes into a point �x0 ,0�, a mirror image of
the injection spot �−x0 ,0�. The primary difficulties with ob-
serving this focusing effect are apparently as follows. First,
even in the absence of any disorder, only a small fraction of

FIG. 3. Semiclassical trajectories of quasiparticles in a disor-
dered GPNJ with ��1. The trajectories start at the midpoint of the
bottom edge, which belongs to the n region. The p region �shaded�
occupies the upper half of the figure. The open �filled� circles are
in-plane Coulomb impurities of negative �positive� charge. The tra-
jectories that carry current across the p-n interface are shown by
dark lines on the n side and tapering white lines on the p side. The
variable width of these lines is the local Fermi wavelength
2	� / p�r�. The thin lines are examples of the trajectories reflected
from the interface.
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electrons can penetrate through the p-n interface: the trans-
verse momenta of such electrons must satisfy the
condition9,17

�py� �
�

xtun
. �35�

Such momenta are much smaller than the typical ones,

py 
 �	n�x0 
  �

xtun
�	 x0

xtun
. �36�

Furthermore, scattering of an electron by a Coulomb impu-
rity typically deflects the electron trajectory by a substantial
angle. Therefore, the lensing additionally requires that a nar-
row fan of trajectories defined by Eq. �35� does not undergo
impurity scattering. The width of this fan in real space is

	x0xtun. Therefore, the condition on x0 becomes

nix0
	x0xtun � 1. �37�

Accordingly, the injection and collection contacts must be
placed no further than the distance

xlens 

1

ni
2/3xtun

1/3 

4	

�8/9xbal �38�

from the interface, which may be considerably smaller than
xbal. Indeed, the absence of a discernible Veselago lensing in
Fig. 3 is in agreement with our estimates: since x0=60 and
xlens
20 �cf. Eq. �38��, we are not yet in the regime x0
�xlens.

IV. DISCUSSION AND CONCLUSIONS

In this final section, we discuss geometrical requirements
imposed by the criterion �14� in actual experiments. Using a
realistic number �
2500 cm2 / �V s� in Eq. �3�, we get ni


1.0�1011 cm−2. Such ni can be achieved if the transport
mobility is limited by, e.g., charged impurities of concentra-
tion Ni
1012 cm−2 �assuming c2
0.1 in Eq. �8��.

We consider first the case of a narrow gap between the
gates, b�d �Fig. 1�b��, where a�0.4. Taking �
1, b
�50 nm, and n0
2�1012 cm−2, similar to those of Ref. 5,
for the above ni, we get �
10. Some evidence for the bal-
listic transport was indeed seen under such conditions.5 On
the other hand, observing Veselago lensing11 seems rather
challenging: it requires placing the injection and collection

contacts within 
10 nm from each other, �cf. Eq. �38��.
Next, in the case of widely separated gates, d=1 �m �and

the same b=50 nm�, we get ��0.1 even for a very high
maximum density n0=1013 cm−2. In order to observe ballistic
transport in this device, the suggested setup should be some-
what modified. For example, using a backgate, one can in-
troduce a uniform offset of the electron density n�x�, which
would shift the location of the p-n interface away from the
x=0 point and closer to the edge of either one of the gates, as
discussed in Ref. 17. In this manner, the density gradient n�
at the GPNJ can be ramped up to its maximum value �21�,
yielding � similar to that in a narrow-gap device.

Although we considered a particular junction geometry
�Fig. 1�a�� our treatment can be readily extended to charac-
terize transmission in any GPNJ with a smoothly varying
electron density, ��1. The basic steps are as follows: �i� find
the carrier density gradient n� at the p-n interface, �ii� com-
pute � from Eq. �10�, �iii� determine, based on the criterion
�14� whether the device is diffusive or ballistic, and finally,
�iv� find the diffusive and ballistic contributions from Eqs.
�11�, �12�, �13a�, and �13b�. �Formula for Rdif can be further
refined if the integration in Eq. �28� is done numerically
using an accurately measured density dependence of the bulk
resistivity ��n�.�

To conclude, disorder can strongly inhibit the ballistic
transport regime in graphene field-effect devices. In recent
experiments4–7 on graphene p-n junctions, this regime was
reached only marginally at best. For ballistic devices, one
should aim at larger electron density gradients n� and higher
mobilities to satisfy the condition �14�. Note that if the pri-
mary source of disorder are charged impurities, then the re-
quirement on n� becomes less stringent for substrates of high
dielectric constant �. In this case, on the one hand, n� is
larger for the same gate voltage and, on the other hand, the
influence of Coulomb scattering is smaller, c2��2��−2.
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