1,725 research outputs found

    Metastability-Containing Circuits

    No full text
    Communication across unsynchronized clock domains is inherently vulnerable to metastable upsets; no digital circuit can deterministically avoid, resolve, or detect metastability (Marino, 1981). Traditionally, a possibly metastable input is stored in synchronizers, decreasing the odds of maintained metastability over time. This approach costs time, and does not guarantee success. We propose a fundamentally different approach: It is possible to \emph{contain} metastability by logical masking, so that it cannot infect the entire circuit. This technique guarantees a limited degree of metastability in---and uncertainty about---the output. We present a synchronizer-free, fault-tolerant clock synchronization algorithm as application, synchronizing clock domains and thus enabling metastability-free communication. At the heart of our approach lies a model for metastability in synchronous clocked digital circuits. Metastability is propagated in a worst-case fashion, allowing to derive deterministic guarantees, without and unlike synchronizers. The proposed model permits positive results while at the same time reproducing established impossibility results regarding avoidance, resolution, and detection of metastability. Furthermore, we fully classify which functions can be computed by synchronous circuits with standard registers, and show that masking registers are computationally strictly more powerful

    The Continuous 1.5{D} Terrain Guarding Problem: {D}iscretization, Optimal Solutions, and {PTAS}

    Get PDF
    In the NP-hard continuous 1.5D Terrain Guarding Problem (TGP) we are given an x-monotone chain of line segments in the plain (the terrain TT), and ask for the minimum number of guards (located anywhere on TT) required to guard all of TT. We construct guard candidate and witness sets G,W⊂TG, W \subset T of polynomial size, such that any feasible (optimal) guard cover G′⊆GG' \subseteq G for WW is also feasible (optimal) for the continuous TGP. This discretization allows us to: (1) settle NP-completeness for the continuous TGP; (2) provide a Polynomial Time Approximation Scheme (PTAS) for the continuous TGP using the existing PTAS for the discrete TGP by Gibson et al.; (3) formulate the continuous TGP as an Integer Linear Program (IP). Furthermore, we propose several filtering techniques reducing the size of our discretization, allowing us to devise an efficient IP-based algorithm that reliably provides optimal guard placements for terrains with up to 1000000 vertices within minutes on a standard desktop computer

    Algorithms for Art Gallery Illumination

    No full text
    We consider a variant of the Art Gallery Problem, where a polygonal region is to be covered with light sources, with light fading over distance. We describe two practical algorithms, one based on a discrete approximation, and another based on nonlinear programming by means of simplex partitioning strategies. For the case where the light positions are given, we describe a fully polynomial-time approximation scheme. For both algorithms we present an experimental evaluation

    Added Value of Combining Multiple Optical and Acoustic Instruments When Characterizing Fine-Grained Estuarine Suspensions

    Get PDF
    Various optical and acoustic instruments have specific advantages and limitations for characterizing suspensions, and when used together more information can be obtained than with one instrument alone. The LISST 100X, for example, is a powerful tool for estimating particle size distribution, but because of the inversion method used to determine the size distribution, it is difficult to distinguish two dominate populations that peak close to one another, especially among larger grain sizes. In the York River estuary, VA, additional information obtained through the deployment of a RIPScam camera system and an ADV along with the LISST 100X allowed differentiation between populations of resilient pellets and flocs in suspension close to the bed and how the populations varied over a tidal cycle. A second example of instrument pairing providing additional information was the use of a PICS video imaging system in the York River to verify the conditions under which use of the ADV Reynolds flux method was valid for estimating settling velocity of suspended particle populations

    The adjoint problem in the presence of a deformed surface: the example of the Rosensweig instability on magnetic fluids

    Full text link
    The Rosensweig instability is the phenomenon that above a certain threshold of a vertical magnetic field peaks appear on the free surface of a horizontal layer of magnetic fluid. In contrast to almost all classical hydrodynamical systems, the nonlinearities of the Rosensweig instability are entirely triggered by the properties of a deformed and a priori unknown surface. The resulting problems in defining an adjoint operator for such nonlinearities are illustrated. The implications concerning amplitude equations for pattern forming systems with a deformed surface are discussed.Comment: 11 pages, 1 figur

    αV-Integrins Are Required for Mechanotransduction in MDCK Epithelial Cells

    Get PDF
    The properties of epithelial cells within tissues are regulated by their immediate microenvironment, which consists of neighboring cells and the extracellular matrix (ECM). Integrin heterodimers orchestrate dynamic assembly and disassembly of cell-ECM connections and thereby convey biochemical and mechanical information from the ECM into cells. However, the specific contributions and functional hierarchy between different integrin heterodimers in the regulation of focal adhesion dynamics in epithelial cells are incompletely understood. Here, we have studied the functions of RGD-binding αV-integrins in a Madin Darby Canine Kidney (MDCK) cell model and found that αV-integrins regulate the maturation of focal adhesions (FAs) and cell spreading. αV-integrin-deficient MDCK cells bound collagen I (Col I) substrate via α2β1-integrins but failed to efficiently recruit FA components such as talin, focal adhesion kinase (FAK), vinculin and integrin-linked kinase (ILK). The apparent inability to mature α2β1-integrin-mediated FAs and link them to cellular actin cytoskeleton led to disrupted mechanotransduction in αV-integrin deficient cells seeded onto Col I substrate

    Schroedinger operators with singular interactions: a model of tunneling resonances

    Full text link
    We discuss a generalized Schr\"odinger operator in L2(Rd),d=2,3L^2(\mathbb{R}^d), d=2,3, with an attractive singular interaction supported by a (d−1)(d-1)-dimensional hyperplane and a finite family of points. It can be regarded as a model of a leaky quantum wire and a family of quantum dots if d=2d=2, or surface waves in presence of a finite number of impurities if d=3d=3. We analyze the discrete spectrum, and furthermore, we show that the resonance problem in this setting can be explicitly solved; by Birman-Schwinger method it is cast into a form similar to the Friedrichs model.Comment: LaTeX2e, 34 page

    On hybrid states of two and three level atoms

    Full text link
    We calculate atom-photon resonances in the Wigner-Weisskopf model, admitting two photons and choosing a particular coupling function. We also present a rough description of the set of resonances in a model for a three-level atom coupled to the photon field. We give a general picture of matter-field resonances these results fit into.Comment: 33 pages, 12 figure

    Engineering Art Galleries

    Get PDF
    The Art Gallery Problem is one of the most well-known problems in Computational Geometry, with a rich history in the study of algorithms, complexity, and variants. Recently there has been a surge in experimental work on the problem. In this survey, we describe this work, show the chronology of developments, and compare current algorithms, including two unpublished versions, in an exhaustive experiment. Furthermore, we show what core algorithmic ingredients have led to recent successes

    Satellite-Derived Distributions, Inventories and Fluxes of Dissolved and Particulate Organic Matter Along the Northeastern U.S. Continental Margin

    Get PDF
    Estuaries and the coastal ocean experience a high degree of variability in the composition and concentration of particulate and dissolved organic matter (DOM) as a consequence of riverine and estuarine fluxes of terrigenous DOM, sediments, detritus and nutrients into coastal waters and associated phytoplankton blooms. Our approach integrates biogeochemical measurements, optical properties and remote sensing to examine the distributions and inventories of organic carbon in the U.S. Middle Atlantic Bight and Gulf of Maine. Algorithms developed to retrieve colored DOM (CDOM), Dissolved (DOC) and Particulate Organic Carbon (POC) from NASA's MODIS-Aqua and SeaWiFS satellite sensors are applied to quantify the distributions and inventories of DOC and POC. Horizontal fluxes of DOC and POC from the continental margin to the open ocean are estimated from SeaWiFS and MODIS-Aqua distributions of DOC and POC and horizontal divergence fluxes obtained from the Northeastern North Atlantic ROMS model. SeaWiFS and MODIS imagery reveal the importance of estuarine outflow to the export of CDOM and DOC to the coastal ocean and a net community production of DOC on the shelf
    • …
    corecore