10,606 research outputs found

    The Detection of a 3.5-h Period in the Classical Nova Velorum 1999 (V382 Vel) and the Long Term Behavior of the Nova Light Curve

    Full text link
    We present CCD photometry, light curve and time series analysis of the classical nova V382 Vel (N Vel 1999). The source was observed for 2 nights in 2000, 21 nights in 2001 and 7 nights in 2002 using clear filters. We report the detection of a distinct period in the light curve of the nova P=0.146126(18) d (3.5 h). The period is evident in all data sets, and we interpret it as the binary period of the system. We also measured an increase in the amplitude modulation of the optical light (in magnitude) by more than 55% from 2000 to 2001 and about 64% from 2001 to 2002. The pulse profiles in 2001 show deviations from a pure sinusoidal shape which progressively become more sinusoidal by 2002. The main cause of the variations in 2001 and 2002 can be explained with the occultation of the accretion disk by the secondary star. We interpret the observed deviations from a pure sinusoidal shape as additional flux resulting from the aspect variations of the irradiated face of the secondary star.Comment: 16 pages and 4 figures, accepted as it stands to be published in the Astronomical Journal (AJ

    Evidence for hard and soft substructures in thermoelectric SnSe

    Get PDF
    SnSe is a topical thermoelectric material with a low thermal conductivity which is linked to its unique crystal structure. We use low-temperature heat capacity measurements to demonstrate the presence of two characteristic vibrational energy scales in SnSe with Debye temperatures thetaD1 = 345(9) K and thetaD2 = 154(2) K. These hard and soft substructures are quantitatively linked to the strong and weak Sn-Se bonds in the crystal structure. The heat capacity model predicts the temperature evolution of the unit cell volume, confirming that this two-substructure model captures the basic thermal properties. Comparison with phonon calculations reveals that the soft substructure is associated with the low energy phonon modes that are responsible for the thermal transport. This suggests that searching for materials containing highly divergent bond distances should be a fruitful route for discovering low thermal conductivity materials.Comment: Accepted by Applied Physics Letter

    Large-scale bottleneck effect in two-dimensional turbulence

    Full text link
    The bottleneck phenomenon in three-dimensional turbulence is generally associated with the dissipation range of the energy spectrum. In the present work, it is shown by using a two-point closure theory, that in two-dimensional turbulence it is possible to observe a bottleneck at the large scales, due to the effect of friction on the inverse energy cascade. This large-scale bottleneck is directly related to the process of energy condensation, the pile-up of energy at wavenumbers corresponding to the domain size. The link between the use of friction and the creation of space-filling structures is discussed and it is concluded that the careless use of hypofriction might reduce the inertial range of the energy spectrum

    Does the Canadian economy suffer from Dutch disease?

    Get PDF

    Does the Canadian economy suffer from Dutch disease?

    Get PDF

    Comparing phenomenological recipes with a microscopic model for the electric amplitude in strangeness photoproduction

    Full text link
    Corrections to the Born approximation in photo-induced strangeness production off a proton are calculated in a semi-realistic microscopic model. The vertex corrections and internal contributions to the amplitude of the γpK+Λ\gamma p \to K^+ \Lambda reaction are included on the one-loop level. Different gauge-invariant phenomenological prescriptions for the modification of the Born contribution via the introduction of form factors and contact terms are discussed. In particular, it is shown that the popular minimal-substitution method of Ohta corresponds to a special limit of the more realistic approach.Comment: 10 pages, 6 figures in the tex

    Order-chaos transitions in field theories with topological terms: a dynamical systems approach

    Full text link
    We present a comparative study of the dynamical behaviour of topological systems of recent interest, namely the non-Abelian Chern-Simons Higgs system and the Yang-Mills Chern-Simons Higgs system. By reducing the full field theories to temporal differential systems using the assumption of spatially homogeneous fields , we study the Lyapunov exponents for two types of initial conditions. We also examine in minute detail the behaviour of the Lyapunov spectra as a function of the various coupling parameters in the system. We compare and contrast our results with those for Abelian Higgs, Yang-Mills Higgs and Yang-Mills Chern-Simons systems which have been discussed by other authors recently. The role of the various terms in the Hamiltonians for such systems in determining the order-disorder transitions is emphasized and shown to be counter-intuitive in the Yang-Mills Chern-Simons Higgs systems.Comment: 19 pages,15 figures available in hard copy from C. Mukku, and through e-mail from [email protected]. To appear in J. Phys.

    Weakly Admissible Meshes and Discrete Extremal Sets

    Get PDF
    We present a brief survey on (Weakly) Admissible Meshes and corresponding Discrete Extremal Sets, namely Approximate Fekete Points and Discrete Leja Points. These provide new computational tools for polynomial least squares and interpolation on multidimensional compact sets, with different applications such as numerical cubature, digital filtering, spectral and high-order methods for PDEs
    corecore