1,368 research outputs found

    A hierarchy of models related to nanoflows and surface diffusion

    Get PDF
    In last years a great interest was brought to molecular transport problems at nanoscales, such as surface diffusion or molecular flows in nano or sub-nano-channels. In a series of papers V. D. Borman, S. Y. Krylov, A. V. Prosyanov and J. J. M. Beenakker proposed to use kinetic theory in order to analyze the mechanisms that determine mobility of molecules in nanoscale channels. This approach proved to be remarkably useful to give new insight on these issues, such as density dependence of the diffusion coefficient. In this paper we revisit these works to derive the kinetic and diffusion models introduced by V. D. Borman, S. Y. Krylov, A. V. Prosyanov and J. J. M. Beenakker by using classical tools of kinetic theory such as scaling and systematic asymptotic analysis. Some results are extended to less restrictive hypothesis

    Multiwavelength observations of the blazar BL Lacertae: a new fast TeV γ-ray flare

    Get PDF
    Proceedings of the 35th International Cosmic Ray Conference (ICRC 2017), Busan (South Korea). Published in Proceeding of Science.Observations of fast TeV γ-ray flares from blazars reveal the extreme compactness of emitting regions in blazar jets. Combined with very-long-baseline radio interferometry measurements, they probe the structure and emission mechanism of the jet. We report on a fast TeV γ-ray flare from BL Lacertae observed by VERITAS, with a rise time of about 2.3 hours and a decay time of about 36 minutes. The peak flux at >200 GeV measured with the 4-minute binned light curve is (4.2±0.6)×10−6photonsm−2s−1, or ∼180% the Crab Nebula flux. Variability in GeV γ-ray, X-ray, and optical flux, as well as in optical and radio polarization was observed around the time of the TeV γ-ray flare. A possible superluminal knot was identified in the VLBA observations at 43 GHz. The flare constrains the size of the emitting region, and is consistent with several theoretical models with stationary shocks

    Transition phenomena in unstably stratified turbulent flows

    Full text link
    We study experimentally and theoretically transition phenomena caused by the external forcing from Rayleigh-Benard convection with the large-scale circulation (LSC) to the limiting regime of unstably stratified turbulent flow without LSC whereby the temperature field behaves like a passive scalar. In the experiments we use the Rayleigh-B\'enard apparatus with an additional source of turbulence produced by two oscillating grids located nearby the side walls of the chamber. When the frequency of the grid oscillations is larger than 2 Hz, the large-scale circulation (LSC) in turbulent convection is destroyed, and the destruction of the LSC is accompanied by a strong change of the mean temperature distribution. However, in all regimes of the unstably stratified turbulent flow the ratio [(xxT)2+(yyT)2+(zzT)2]/\big[(\ell_x \nabla_x T)^2 + (\ell_y \nabla_y T)^2 + (\ell_z \nabla_z T)^2\big] / varies slightly (even in the range of parameters whereby the behaviour of the temperature field is different from that of the passive scalar). Here i\ell_i are the integral scales of turbulence along x, y, z directions, T and \theta are the mean and fluctuating parts of the fluid temperature. At all frequencies of the grid oscillations we have detected the long-term nonlinear oscillations of the mean temperature. The theoretical predictions based on the budget equations for turbulent kinetic energy, turbulent temperature fluctuations and turbulent heat flux, are in agreement with the experimental results.Comment: 14 pages, 14 figures, REVTEX4-1, revised versio

    Contact orderability up to conjugation

    Get PDF
    We study in this paper the remnants of the contact partial order on the orbits of the adjoint action of contactomorphism groups on their Lie algebras. Our main interest is a class of non-compact contact manifolds, called convex at infinity.Comment: 28 pages, 1 figur

    Multifrequency Photo-polarimetric WEBT Observation Campaign on the Blazar S5 0716+714: Source Microvariability and Search for Characteristic Timescales

    Get PDF
    Here we report on the results of the WEBT photo-polarimetric campaign targeting the blazar S5~0716+71, organized in March 2014 to monitor the source simultaneously in BVRI and near IR filters. The campaign resulted in an unprecedented dataset spanning 110\sim 110\,h of nearly continuous, multi-band observations, including two sets of densely sampled polarimetric data mainly in R filter. During the campaign, the source displayed pronounced variability with peak-to-peak variations of about 30%30\% and "bluer-when-brighter" spectral evolution, consisting of a day-timescale modulation with superimposed hourlong microflares characterized by 0.1\sim 0.1\,mag flux changes. We performed an in-depth search for quasi-periodicities in the source light curve; hints for the presence of oscillations on timescales of 3\sim 3\,h and 5\sim 5\,h do not represent highly significant departures from a pure red-noise power spectrum. We observed that, at a certain configuration of the optical polarization angle relative to the positional angle of the innermost radio jet in the source, changes in the polarization degree led the total flux variability by about 2\,h; meanwhile, when the relative configuration of the polarization and jet angles altered, no such lag could be noted. The microflaring events, when analyzed as separate pulse emission components, were found to be characterized by a very high polarization degree (>30%> 30\%) and polarization angles which differed substantially from the polarization angle of the underlying background component, or from the radio jet positional angle. We discuss the results in the general context of blazar emission and energy dissipation models.Comment: 16 pages, 17 Figures; ApJ accepte

    Reverberation Mapping Results for Five Seyfert 1 Galaxies

    Full text link
    We present the results from a detailed analysis of photometric and spectrophotometric data on five Seyfert 1 galaxies observed as a part of a recent reverberation mapping program. The data were collected at several observatories over a 140-day span beginning in 2010 August and ending in 2011 January. We obtained high sampling-rate light curves for Mrk 335, Mrk 1501, 3C120, Mrk 6, and PG2130+099, from which we have measured the time lag between variations in the 5100 Angstrom continuum and the H-beta broad emission line. We then used these measurements to calculate the mass of the supermassive black hole at the center of each of these galaxies. Our new measurements substantially improve previous measurements of MBH and the size of the broad line-emitting region for four sources and add a measurement for one new object. Our new measurements are consistent with photoionization physics regulating the location of the broad line region in active galactic nuclei.Comment: 45 pages, 5 figures. Accepted for publication in ApJ. For a brief video explaining the key results of this paper, see http://www.youtube.com/user/OSUAstronom
    corecore