450 research outputs found

    Simulation numerique d’ouvrages de protection des eaux souterraines contre toute pollution causee par un terrain de decharge de dechets industriels

    Get PDF
    The use of a deserted clay quarry to collect iron manufacturing-derived special wastes has been carefully assessed with a view to protecting ground water resources. The shallower ground water is of low quantity and poor quality. It is encompassed by a calcarenite aquifer, the bottom of which consists of clays. A limited calcarenite layer is found below, transgressively lying over the main Apulian carbonate shelf. The aquifer carbonate rocks enclose large ground water resources which ultimately flows into the Ionian Sea. A plastic waterproof diaphragm inert to percolation products has been installed to protect ground water against pollution hazards resulting from the disposal of industrial wastes. The dump is actually located in the vicinity of major industrial plants, the basements of which corresponds to the shallow aquifer. Both the basements and the railway cuttings greatly affect the ground water flow. Hydrogeological applied numerical calculation techniques have been used to evaluate the impact of a drainage trench on the ground water flow together with any noticeable influence of the latter on construction works and industrial plants in place

    Climate change and Mediterranean coastal karst aquifers: the case of Salento (southern Italy)

    Get PDF
    Second half of the 20th century was characterized by an increase of groundwater discharge. Numerous aquifers are overexploited in the world and in particular in the Mediterranean area. Problems tie to overexploitation, as piezometric decline and increase of seawater intrusion, are amplified in karst coastal aquifers where the whole effect could be a groundwater quality and quantity degradation. Focusing on Mediterranean countries, most part of coastal aquifers of Spain, France, Portugal, Slovenia, Croatia, Greece, Albania, Turkey, and Italy are karstic and affected, to different degrees, by seawater intrusion due high pumping extraction rates and low recharge. (COST, 2005; Polemio et al., 2010). Climate change may particularly aggravate these requirements, especially in the Mediterranean areas, due to the combined effects of semiarid condition climate, or reduced recharge and consequent increase of discharge (Cotecchia et al., 2003; Polemio 2005; Polemio et al., 2009). The general purpose of this paper is to prove the capability of large-scale numerical models in management of groundwater, in particular for achieve forecast scenarios to evaluate the impacts of climate change on groundwater resources of karst coastal aquifer of Salento (Southern Italy). The computer codes selected for numerical groundwater modelling were MODFLOW and SEAWAT. Three forecast transient scenarios, referred to 2001-2020, 2021-2040 and 2041-2060, were implemented, on the basis of calibrated and validated model, with the aim to predicting the evolution of piezometric level and seawater intrusion. The scenarios were discussed considering the effects of climate change, sea level rise and change of sea salinity

    Hydrogeological modeling for sustainable groundwater management under climate change effects for a karstic coastal aquifer (Southern Italy)

    Get PDF
    Seawater intrusion is a pervasive problem affecting coastal aquifer, where the concentration of population and the increasing water demand creates risks of overexploitation, especially in those areas where is the only resource of drinking and irrigation water. This phenomenon is more considerable for the coastal karst aquifers, as observed in many Mediterranean countries and in some Italian regions as Friuli, Sardegna, Sicilia, Lazio, Campania and Puglia. This note aims to describe a research activity finalised to define a numerical model as management tools for groundwater resource of Salento (South Italy) to reduce the quantitative and qualitative degradation risks. The numerical codes used was MODFLOW (McDonald and Harbaught, 1988) and SEAWAT (Guo and Langevin, 2002). The active domain of the study area (active cells) covered approximately 2,300 km2 with 45,925 cells. Vertically, to allow a good lithological and hydrogeological discretization, the area was divided into 12 layers, from 214 to -350 m asl. Thickness and geometry of layers was defined on the basis of the aquifer conceptualisation based on the 3D knowledge of hydrogeological complexes. On the basis of detailed geological and hydrogeological conceptualisation, the climate change effects were considered in terms of natural recharge variations from 1930 to 1999 (Cotecchia et al., 2005; Polemio and Casarano, 2008). To take account of anthropogenic activity, mainly due to tourism and agriculture, the discharging trend was assessed, focusing on late decenniums (eighties and nineties), in which the discharge increase was mainly observed. Models representing the natural steady-state condition (using data of thirties) and transient scenarios of late decenniums were realised. The purpose of this first model implementation was, besides validated model, to assess the groundwater availability and quality in a recent period of seventy years (Polemio and Romanazzi, 2012; Romanazzi and Polemio, 2013). Results emphasize an essential decrease of piezometric levels and a worsening of seawater intrusion. On these bases, six forecasting transient scenarios were implemented, referred to future periods of about twenty years (2000-2020, 2021-2040 and 2041-2060) with the aim to predicting the evolution of piezometric level and seawater intrusion. For forecast data about precipitation and temperature, among the many models in the literature, we referred to the model developed by Giorgi and Lionello (2008), in relation to the defined scenario A1B. The model predicts temperature variations (°C) and precipitation percentage variation for the period 2001-2100. It was considered an average temperature variation form 0.9 °C (2001-2020) to 2.4 °C (2040-2060). Precipitation shows a negative percentage change (referred to 1960-80) equal to -3.9, -5.9 and -9,0% respectively for 2000-2020, 2021-2040 and 2041-2060. These climatic data are in agreement with other climate change models (Garcia- Ruiz et al., 2011). For the three future scenarios new recharge and discharge were assessed. In terms of discharge, they are mainly due to irrigation. For this kind of future utilisation two hypotheses were considered. The first assumes that type and extension of cultivations will be steady and, as an effect of climate change, the pressure on groundwater resource will further rise as necessary to satisfy irrigation demand (Dragoni and Sukhjia, 2008; Goderniaux et al., 2008). In the second hypothesis the irrigation discharge will be steady and equal to those of the 1999 due the adaption of cultivation types and irrigation practices. In both cases the scenario results show a general decrease of the piezometric head and a deterioration of water quality caused by seawater intrusion (Romanazzi et al., 2013). The results call for new land and groundwater resources management criteria. Considering the Water Framework Directive (EC, 2000) and international and regional experiences (LaMoreaux, 2010; Jiménez-Madrid, 2010; Polemio et al., 2009, Polemio et al., 2010), the study area was subdivided in three zones. To define the zone boundary, the threshold criterion was used (Polemio and Limoni, 2001; Polemio et al., 2009). The threshold between pure fresh groundwater and any type of mixing between fresh and saline groundwater was defined equal to of 0.5 g/l. In the first zone, the coastal zone, salinity was always (in the past) above the threshold, a transition zone, where salinity was variable respect to the threshold, and a third zone or inland zone where salinity value was permanently below the threshold. These three zones were implemented in the model. Different combinations of discharge criterions applied to these zones suggest the best choices to be applied for management criteria able to safely considered the future effects of climate changes

    Modelling and groundwater management of a karstic coastal aquifer: the case of Salento (Apulia, Italy)

    Get PDF
    The coastal karst aquifers are known to be highly vulnerable to anthropogenic and natural changes, and in particular to the overexploitation of groundwater resources. The high degree of vulnerability is due to their intrinsic characteristics, anthropogenic pollution, and the effects seawater intrusion. The progressive population concentration in coastal areas and the increasing discharge overlapped to peculiarities of karstic coastal aquifers constitute a huge worldwide problem, particularly relevant for coastal aquifers of the Mediterranean basin. In Italy, Apulia, with its coastline extending over 800 km, is the region with the largest coastal karst aquifers. The predominant karstic Apulian features make the region extremely poor of surface water resources and rich of high quality groundwater resources. These resources still allow the social and economic development of population, improving agricultural and tourist opportunities. The continuous increasing well discharge causes or contributes to the groundwater quality degradation, often making the groundwater unusable for irrigation and drinking (Polemio et al. 2009). The strategic importance of groundwater resources and its wise management for Apulian population is due to these risks (Cotecchia and Polemio 1998, Margiotta and Negri 2005). The aim of this study is to define the efficacy of existing management tools and to develop predictive scenarios to identify the best way to reconcile irrigation and drinking water demands with enduring availability of high quality groundwater. The Salento (Salentine Peninsula), was selected being the Apulian aquifer portion exposed to the highest risk of quality degradation due to seawater intrusion

    Modelling and management of a Mediterranean karstic coastal aquifer under the effects of seawater intrusion and climate change

    Get PDF
    The study and management of the groundwater resources of a large, deep, coastal, karstic aquifer represent a very complex hydrogeological problem. Here, this problem is successfully approached by using an equivalent porous continuous medium (EPCM) to represent a karstic Apulian aquifer (southern Italy). This aquifer, which is located on a peninsula and extends to hundreds of metres depth, is the sole local source of high-quality water resources. These resources are at risk due to overexploitation, climate change and seawater intrusion. The model was based on MODFLOW and SEAWAT codes. Piezometric and salinity variations from 1930 to 2060 were simulated under three past scenarios (up to 1999) and three future scenarios that consider climate change, different types of discharge, and changes in sea level and salinity. The model was validated using surveyed piezometric and salinity data. An evident piezometric drop was confirmed for the past period (until 1999); a similar dramatic drop appears to be likely in the future. The lateral intrusion and upconing effects of seawater intrusion were non-negligible in the past and will be considerable in the future. All phenomena considered here, including sea level and sea salinity, showed non-negligible effects on coastal groundwater

    Iterative hierarchical clustering algorithm for automated operational modal analysis

    Get PDF
    Recent developments in sensors and data processing made the structural health monitoring (SHM) sector expanding to big-data field, particularly when continuous long-term strategies are implemented. Nevertheless, main shortcomings are due to the identification and extraction of modal features. In fact, although machine learning methods have been implemented to automate modal identification processes, intense user interaction and time-consuming procedures are still required, limiting the extensive use of these techniques. In order to provide a fully automated procedure capable of identifying and extracting modal properties from covariance driven SSI analyses, an innovative and flexible algorithm for Iterative Hierarchical Clustering Analysis (IHCA) is proposed. To evaluate the stability and robustness of the IHCA method, a Variance-Based Global sensitivity Analysis (VBGA) was performed considering a numerical and experimental case study. The outcomes demonstrated that the IHCA is stable in clustering the physical structural modes and selecting the most representative modal features

    Electromagnetic and thermal homogenisation of an electrical machine slot

    Get PDF
    In this paper we propose an original technique based on the finite element method to couple electromagnetic and thermal homogenisation of multiturn windings. The model accurately accounts for skin and proximity effects considering the temperature dependence of electrical resistivity. We validate the approach by modelling a reference electrical machine open slot with representative boundary conditions. The case study refers to a particular wire shape and winding periodic configuration but the method can be applied to any symmetrical wire shape. The homogenisation allows us to efficiently evaluate the hot- spot temperature within the slot. The solution provided by the homogenised model proves to be very accurate over a large range of frequencies, when compared to the results using a fine model where all the conductors are physically reproduced

    Partial Hydrogenation of Soybean and Waste Cooking Oil Biodiesel over Recyclable-Polymer-Supported Pd and Ni Nanoparticles

    Get PDF
    Biodiesel obtained through the transesterification in methanol of vegetable oils, such as soybean oil (SO) and waste cooking oil (WCO), cannot be used as a biofuel for automotive applications due to the presence of polyunsaturated fatty esters, which have a detrimental effect on oxidation stability (OS). A method of upgrading this material is the catalytic partial hydrogenation of the fatty acid methyl ester (FAME) mixture. The target molecule of the partial hydrogenation reaction is monounsaturated methyl oleate (C18:1), which represents a good compromise between OS and the cold filter plugging point (CFPP) value, which becomes too high if the biodiesel consists of unsaturated fatty esters only. In the present work, polymer-supported palladium (Pd-pol) and nickel (Ni-pol) nanoparticles were separately tested as catalysts for upgrading SO and WCO biodiesels under mild conditions (room temperature for Pd-pol and T = 100◦ C for Ni-pol) using dihydrogen (p = 10 bar) as the reductant. Both catalysts were obtained through co-polymerization of the metal containing monomer M(AAEMA)2 (M = Pd, Ni; AEEMA− = deprotonated form of 2-(acetoacetoxy)ethyl methacrylate)) with co-monomers (ethyl methacrylate for Pd and N,N-dimethylacrilamide for Ni) and cross-linkers (ethylene glycol dimethacrylate for Pd and N,N’-methylene bis-acrylamide for Ni), followed by reduction. The Pd-pol system became very active in the hydrogenation of C=C double bonds, but poorly selective towards the desirable C18:1 product. The Ni-pol catalyst was less active than Pd-pol, but very selective towards the mono-unsaturated product. Recyclability tests demonstrated that the Ni-based system retained its activity and selectivity with both the SO and WCO substrates for at least five subsequent runs, thus representing an opportunity for waste biomass valorization

    Drug Release from Viscoelastic Swelling Polymeric Platforms

    Get PDF
    We consider a polymeric spherical platform containing a solid dispersed drug that is in contact with a solvent fluid. While swelling, a non-Fickian sorption of the solvent molecules occurs induced by the effect of the viscoelastic properties of the polymer. The solid drug in contact with the solvent fluid dissolves and a Fickian release of dissolved drug takes place. The fluid entrance, the drug dissolution, and the drug release to an external environment are described by a system of PDEs complemented with an equation for the swelling front, initial, and boundary conditions. The model includes the two major factors that govern a swelling process of a polymeric platform within a release medium: the cross-link density and the concentration of the external medium. Energy estimates for the mass of solvent fluid and of undissolved and dissolved drug in the polymeric platform are established. Numerical simulations that illustrate the theoretical results are also included
    • …
    corecore