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Abstract—In this paper we propose an original technique
based on the finite element method to couple electromagnetic
and thermal homogenisation of multiturn windings. The
model accurately accounts for skin and proximity effects con-
sidering the temperature dependence of electrical resistivity.
We validate the approach by modelling a reference electrical
machine open slot with representative boundary conditions.
The case study refers to a particular wire shape and winding
periodic configuration but the method can be applied to any
symmetrical wire shape. The homogenisation allows us to
efficiently evaluate the hot-spot temperature within the slot.
The solution provided by the homogenised model proves to
be very accurate over a large range of frequencies, when
compared to the results using a fine model where all the
conductors are physically reproduced.

Index Terms— homogenisation, multiphysics, electrical
machines, hot-spot temperature.

I. INTRODUCTION

Energy conversion in electrical machines is affected by
electromagnetic (EM) and mechanical losses. The losses
are a function of a number of parameters, such as torque,
rotational speed, control strategy, winding configuration,
temperature, etc. Precise loss estimation allows for ac-
curate thermal analysis of the machine, ensuring correct
behaviour at any operational point, and a longer life, since
the winding hot-spot temperature should always be kept
lower than the threshold given by the winding insulation
class [1]. Electrical machine windings are heated by
resistive losses and ac effects can significantly increase
the heat generation. A conductor exposed to a varying
magnetic field from itself (skin effect) or neighbouring
conductors (proximity effect) will exhibit a non-uniform
current density J and this needs to be quantified for
accurate thermal modelling.

Usually, accurate loss computation may be achieved
by numerical modelling such as solution of Maxwell’s
equations using the Finite Element (FE) method on a suit-
ably refined mesh, accounting for every single wire (fine
model). The temperature field is then solved on the same
mesh by solving the heat equation using the losses from
the EM simulation. Since conduction losses are dependent
on temperature [2]–[4], the solution of the EM and thermal
models should be coupled in order to obtain the total loss
distribution, as a function of temperature, and the hot-
spot temperature. The computational burden related to this
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Fig. 1. Homogenisation of an open slot with 108 conductors disposed
on a square lattice (12 layers of 9 wires), λ = 0.6; dimensions are in
[mm] and material properties are given in Table I

TABLE I
REFERENCE MATERIAL PROPERTIES FOR THE ELECTROMAGNETIC

AND THERMAL PROBLEMS

Copper Polyamide Epoxy M19
c i ep m19

k [W/mK] 385 0.26 0.85 25

c [J/kgK] 386 1000 1700 -
d [kg/m3] 8890 1440 1766 -

ρ [Ωm] ρ(T ) 0 0 0
µ [Hm] µ0 µ0 µ0 1200µ0

ε [F/m] ε0 ε0 ε0 ε0

“brute force” approach is high. The homogenisation of
the winding domain can significantly reduce the computa-
tional time; this is achieved by replacing the heterogeneous
and periodic winding structure, i.e. insulated conductors
bonded together with epoxy, with a homogeneous material
made up of effective parameters, Fig. 1. It should be
understood that model order reduction via homogenisation
provides the macroscopic behaviour of the domain [5],
ensuring the same level of accuracy provided by a fine
model.

The homogenisation of the EM problem accounting for
eddy currents introduces a frequency-dependent effective
complex reluctivity for the homogenised winding domain
and a frequency-dependent impedance for the external
lumped circuit [6]. These parameters can be obtained from
the solution of particular cell problems using FE assuming
periodicity in the original geometry, as we will show later.
We can then analyse the homogenised winding in the
frequency [7] or time [8,9] domain, with 2D [7,8] or 3D
[9] geometries. The homogenisation can be applied also



when 2 phases of a 3-phase machine are placed in the
same slot [10].

In this work we extend the EM homogenisation method
presented in [7] to account for the temperature dependence
of the effective parameters in the homogenised EM model.
As discussed in [11] the homogenisation of the thermal
problem can be performed using analytical formulas, e.g.
the Hashin and Shtrikman formula [12,13], or via mea-
surement on suitable speciments [13,14]. However both
these approaches have limitations, the first in terms of
accuracy, as is not able to accurately account for wire
distribution and shape, whereas the second is not cost-
effective. In this work the Multiple-Scales (MS) method
[15] is employed because, as shown in the later sections,
is able to provide a very accurate homogenisation with
limited computations. The two homogenisation approaches
are then coupled iteratively to obtain an overall solution
of the EM and thermal behaviour of a reference electrical
machine slot, Fig. 1. The resulting multiphysics homogeni-
sation is shown to predict magnitude and location of the
hot-spot temperature very accurately, by comparing it to
the results given by a fully coupled fine model. All the
numerical calculations shown in this paper were performed
with COMSOL Multiphysics v5.2.

II. ELECTROMAGNETIC HOMOGENISATION OF A
WINDING

In this section we give an overview of the method
presented in [7] for the homogenisation of the EM prob-
lem. The method is then extended to account for thermal
effects.

When a sinusoidal current of frequency f (Hz) is
injected into a multiturn winding, eddy currents are in-
duced in the conductors. These are mainly a function
of f , which may be expressed as the reduced frequency
X = r

√
fπµ0/ρ, where r, ρ and µ0 are the conductor’s

radius, electrical resistivity and permeability respectively,
and the skin depth δ =

√
2ρ/ωµ0, where ω = 2πf (rad/s).

Other parameters that affect these losses are wire shape
and distribution, number of layers, filling ratio and tem-
perature. A proper homogenisation of the winding should
be able to reproduce the eddy-current effects even though
the conductors are not physically modelled individually. In
a fine model we calculate the distribution of J in each wire
with Maxwell’s equations, using, e.g., the magnetic vector
potential A formulation, defined as B = ∇×A with B
the magnetic flux density. To homogenise the domain we
need to obtain an effective complex reluctivity νprox that
accounts for the influence of an external magnetic field,
i.e. proximity effect, where ν = µ−1. To consider the skin
effect, an effective impedance Zskin is introduced in the
lumped electrical circuit that feeds the winding.

Assuming that the conductors are connected in series
and periodically distributed, e.g. on a square lattice, we can
apply the method presented in [7] for the homogenisation
of a multiturn winding in the frequency domain. The
method exploits the orthogonality of the skin and prox-
imity effect [16], which holds for symmetric conductors.
To obtain the effective quantities, the skin and proximity
effects are excited separately on a limited number of

(a) (b)

Fig. 2. Magnetic flux lines for the skin effect excited at 20 kHz for (a)
T = 20 ◦C and X = 1.73 or (b) T = 150 ◦C and X = 1.41

elementary cells, Fig. 2; the former by injecting a unit
current and imposing zero average flux density, the latter
by removing the current and imposing a unit average
horizontal flux density [7,8]. The number of elementary
cells is chosen in order to balance accuracy and model
complexity [7,17]. Fig. 2 shows the flux lines when the
skin effect is excited in the elementary cells with a 20 kHz
current at different temperatures. In Fig. 2 the elementary
cells are distributed on a square lattice with a filling ratio
λ = 0.6, where λ = Ωc

Ω , with Ωc and Ω being the
conductor and unit cell surfaces respectively.

As shown in [7], we can express the effective complex
reluctivity and effective impedance as

νprox = qBν0 + j pB
λr2ω

4ρ
(1a)

Zskin = pIRDC + j qIω
µ0L

8πλ
(1b)

where RDC = Lρ/Ωc is the DC resistance, with L the
axial length of the domain, and j =

√
−1. The four dimen-

sionless parameters pI , qI , pB and qB are obtained evalu-
ating the complex power S = L

∫
Ω

(
ρ|J |2 + j ων0|b|2

)
dΩ

absorbed by the central cell of Fig. 2 when the skin
effect (Sskin) or the proximity effect (Sprox) are excited.
We then compute pI , qI , pB and qB with the following
relations [7]

Sprox
ΩL|B|2

= pB
λr2ω2

4ρ
+ j qBων0,

Sskin
|I|2

= Zskin (2)

where |Y | represents a r.m.s. value: |Y | =
√
Y Y ∗.

We extend this technique to include the influence of
temperature. It is well known that the temperature depen-
dence of the electrical resistivity of a conductor can be
approximated with

ρ(T ) = ρ0 (1 + α(T − T0)) (3)

where T is temperature, ρ0 is the resistivity at the refer-
ence temperature T0 and α is the temperature coefficient;
e.g. for copper ρ = 1.68× 10−8 Ωm at T0 = 20 ◦C and
α = 0.003 862 ◦C−1. As shown in Table I the thermal
conductivity of copper is very high compared to the
thermal conductivity of the insulation and epoxy, thus
we can assume that the temperature distribution within
a conductor is always uniform. To analyse the parameters
at, e.g., T = 150 ◦C, in the cell problems we adjust the
conductor’s resistivity to ρ = ρ(150 ◦C) using (3), see Fig.
2(b). In Fig. 3(a) and 3(b) pI , qI pB and qB are plotted
as a function of f , for the case of λ = 0.6, distribution
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Fig. 3. Eddy-current parameters for wires on a square lattice with
λ = 0.6; (a) skin effect parameters pI and qI at various temperatures
against frequency, (b) proximity effects pB and qB at various temper-
atures against frequency and (c) pI , qI , pB and qB against reduced
frequency X = X(T )

on a square lattice and various temperatures. The reduced
frequency X = X(ρ(T )) can be used to collapse the
curves at different temperatures into a single line, as shown
in Fig. 3(c). The multiphysics homogenisation is thus
simplified, since we need to estimate a single set of four
parameters only.

III. THERMAL HOMOGENISATION OF THE WINDING

The temperature distribution within the winding can be
obtained by solving the heat equation

C
∂T

∂t
= ∇ · (k∇T ) + q̇ (4)

where C = cd, with c being specific heat capacity,
d density, and k thermal conductivity. In our case, the
internal heat generation q̇ is the coupling between the

two problems as it comes from the EM computations.
It is important to highlight that to properly solve the
temperature field within a winding the wires’ insulation
has to be taken into account, because the insulation thermal
conductivity can be significantly different from both the
conductors and filling material, see Table I. Accordingly,
in the fine model the mesh size used for the multiphysics
analysis is higher compared to the one used for the
discretisation of the EM problem alone.

We homogenise (4) applying the Multiple-Scales (MS)
method [15]. We introduce x′ = x/τ as the microscale
variable that measures variations within a periodic cell,
where τ = l

W � 1, W is the reference macroscale length
and l the separation between the conductors (see Fig. 1);
x is the macroscale variable accounting for variations in
the whole slot. As usual in the MS method, we assume x′

to be independent from x and impose that the solution is
exactly periodic in x′. After introducing the two scales
and using the chain rule, spatial derivatives transform
according to ∇x → ∇x + 1

τ∇x′ . With this transform the
dimensionless form of (4) becomes

τ2αm
∂T̃

∂t̃
= βm

(
τ2∇x̃2 T̃+

+ 2τ∇x̃ · ∇x̃′ T̃ +∇2
x̃′ T̃
)

+ τ2 ˙̃q (5)

where tilde denotes non-dimensional variables, e.g. x =
x̂x̃ with x̂ = W , and the following dimensionless groups
were introduced

αm =
W 2

t̂

cmdm

k̂
, βm =

km

k̂

where the subscript m refers to each material part of
the winding compound: c for the conductor, i insulation
and ep epoxy (see Table I); t̂ is a reference time, ˙̃q
the nondimensional heat generation and k̂ the reference
thermal conductivity, e.g. k̂ = kep.

Following the standard MS method, we now seek an
asymptotic solution in the limit of small τ to (5) of
the form T̃ (x̃′, x̃, t̃) = T̃ (0)(x̃′, x̃, t̃) + τ T̃ (1)(x̃′, x̃, t̃) +
τ2T̃ (2)(x̃′, x̃, t̃) + · · · , periodic in x̃′. Performing an
asymptotic analysis of (5) up to o(τ2) we obtain the
following homogenised heat equation

C̃eq
∂T̃ (0)

∂t̃
= ∇x̃ ·

(
k̃eq∇x̃T̃

(0)
)

+ ˙̃qeq (6a)

where C̃eq is the effective heat capacity, k̃eq the 2× 2 ef-
fective thermal conductivity matrix and ˙̃qeq the equivalent
non-dimensional heat generation, defined as

C̃eq =
1

Π

∑
m

αmΠm (6b)

k̃eq =
1

Π

∑
m

[
βm

∫
Πm

Id − F(x̃′)

]
dΠm (6c)

˙̃qeq = λ ˙̃q (6d)

where in (6c) Id is the 2 × 2 identity matrix, (F)ij =
∂Γj/∂x̃

′
i the transpose of the Jacobian matrix of Γ, and

Πm represents a surface according to Fig. 4(a) (Πc∪Πi∪
Πep = 1).

Γ is a vector function whose components Γr (r = x̃′, ỹ′)
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Fig. 4. (a) Microscopic domain x̃′ ∈ Π related to the square lattice
wires, νc = rc

l
and νi = ri

l
, and (b) Γx̃′ distribution for a square

lattice configuration with λ = 0.6

satisfy the following problem in the cell domain of Fig.
4(a)

βm∇2
x̃′Γr = 0 (7a)

βc (∇x̃′Γr − er) · n =

βi (∇x̃′Γr − er) · n on ‖x̃′‖ = νc, (7b)

βi (∇x̃′Γr − er) · n =

βf (∇x̃′Γr − er) · n on ‖x̃′‖ = νi (7c)

with Γr periodic on the external boundaries, and er is the
unit vector in the rth direction in Π. The unit cell of Fig.
4(a) is obtained by nondimensionalising the original cell
with respect to l, e.g. νc = rc

l and νi = ri
l . In Fig. 4(b) we

show the solution of the cell problem for Γx̃′ that allows
us to evaluate the effective thermal conductivity along x
in the macroscopic domain using (6c). The method can
be applied to any wire shape simply by setting the cell
problem (7) accordingly.

Once the dimensions to C̃eq and k̃eq are restored, we
obtain the parameters Ceq and keq . For instance, making
reference to the material properties in Table I, λ = 0.6
(rc = 0.8× 10−1 m and ri = 0.835× 10−1 m) and square
lattice configuration, we obtain Ceq = 3.176 MJ/m3K and
keq is a 2× 2 diagonal matrix with keqj,j = 2.53 W/mK,
due to the circular geometry.

IV. APPLICATION EXAMPLE

A. Internal heat generation

One of the inputs to the thermal model of the winding is
the internal heat generation due to the circulating currents.
In the fine model the magnitude of the internal heat
generation can be estimated very accurately by evaluating
the real part of S, P = Lnw

∫
Ωc
ρ|J |2dΩ with nw number

of wires. For the homogenised model we evaluate the real
parts of (2)

Ph = pIRDC |I|2 + pB
λLr2ω2

4ρ

∫
Ω

|b|2dS (8)

since in the homogenised winding we impose a uniform
current density |Jh| = λ|I|

πr2 [7].
By way of example, we compare the fine and ho-

mogenised models in estimating the losses, applying the
approaches to the reference electrical machine open slot
shown in Fig. 1. The geometry and dimensions are given
in Fig. 1 with the material properties of Table I. For this
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Fig. 6. Estimation of the total loss and magnetic flux lines in the winding
domain at X = 1 (f = 6.65 kHz, |I| = 3 A) with (a) the fine model
and (b) the homogenised model. Wires distributed on a square lattice
with λ = 0.6 and constant electrical resistivity ρ = ρ(20 ◦C)

case study we assume the core (M19) to be linear and
lossless (constant real-valued permeability) as the focus
of this analysis is on the winding domain.

We feed the winding with a sinusoidal current with
|I| = 1 A at various frequencies. In this first analysis,
we assume the EM and thermal problems are decoupled,
using a fixed electrical conductivity ρ = ρ(20 ◦C). The
losse, expressed as usual in terms of the ratio RAC/RDC ,
where RAC = P/|I|2 is the equivalent RAC resistance,
are presented for the two models in Fig. 5. The agreement
between the two models is very good, with a relative error
lower than 0.5%.

It is now interesting to look at the loss distribution
within the winding domain. At low frequencies the ac
effects are minimal, Fig. 5, and the losses are almost
uniformly distributed between the wires. Increasing the
frequency, the leakage flux due to the slot opening pro-
duces high proximity losses in the wires at the top of the
winding domain. In Fig. 6 we compare the estimation of
the loss distribution in the fine and homogenised winding
domains at X = 1 (f = 6.65 kHz) and |I| = 3 A. The
fine model, Fig. 6(a), provides a very accurate distribution
of the losses within each wire, with the highest peaks in
the wires sitting in the top corners. On the other hand, the
homogenised model, Fig. 6(b), gives the macroscopic loss
distribution. The peaks are still located in the top corners,
however the maximum values are significantly lower since
we lose information about the wire geometry (although in
a cell-average sense the losses are correct).

The equivalence of the two loss profiles can be proved
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Fig. 7. Estimation of the temperature distribution in the winding domain
at X = 1 (f = 6.65 kHz, |I| = 3 A) with (a) the fine model and
(b) the homogenised model. (c) Comparison of the solution along the
vertical mid-cross section within the winding domain. The solutions are
obtained using losses generated by the EM fine and homogenised model
respectively (Fig. 6)

by analysing the output temperature fields of the fine and
homogenised thermal problems using the losses of Fig.
6. For the thermal problem we look at the steady state
temperature distribution imposing the boundary conditions
shown in Fig. 1, where Tfixed = 20 ◦C and the convection
is modelled with the law q̇conv = h(T − T∞), where
h = 20 W m−2K−1 and T∞ = 20 ◦C; thermal periodicity
is imposed on the lateral edges. These boundary conditions
can be representative of a machine cooled with a water
jacket. The results are presented in Fig. 7. In the fine
model the temperature within each conductor is uniform,
Fig. 7(a). The homogenised model is able to capture
quite accurately the hot-spot temperature magnitude and
location, Fig. 7(b), as confirmed in Fig. 7(c) where we plot
the T profile along the vertical mid-cross section within
the winding domain; in Fig. 7(c) the difference between
the hot-spot temperatures using both approaches, defined
as the highest temperature in the winding domain, is lower
than 0.1 ◦C.

B. Internal heat generation including temperature effects

As mentioned in the previous sections, temperature
affects the electrical resistivity of the conductors according
to (3). The temperature dependence of the resistivity ρ
cannot be neglected for a proper assessment of the losses
and the hot-spot temperature [4]. In the fine model this
can be easily included by solving the model iteratively for
ρ(T ). As shown in Section II, the parameters pI , qI , pB
and qB vary with temperature for a certain f . Using a
single set of parameters, temperature dependency can be
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captured with X(T ) = r
√
fπµ0/ρ(T ), leading to a new

formulation of the effective complex reluctivity

νprox(x, T ) = qB
(
X(T )

)
ν0 + j pB

(
X(T )

) λr2ω

4ρ(T )
(9a)

and effective impedance

Zskin(T̄ ) = pI
(
X(T̄ )

)
RDC(T̄ )+

j qI
(
X(T̄ )

)
ω
µ0L

8πλ
(9b)

where T̄ is the average temperature in the winding domain.
In (9b) we used the average temperature Zskin(T̄ ) since
the impedance is an element placed in the external lumped
circuit. This assumption, however, has a small impact
on the model accuracy since in general with increasing
frequency the skin effect is almost negligible compared
to the proximity effect when we have leakage flux [7,10].
On the other hand, νprox(x, T ) varies with the macroscale
coordinate x within the homogenised winding domain.

In Fig. 8 we present the loss estimation with the coupled
EM and thermal model in terms of RAC/RDC , referring
to the same case study of Fig. 1. The ratio RAC/RDC is
now plotted against f because X(T ) cannot be uniquely
defined. Compared to the decoupled model with constant
conductivity ρ = ρ(20 ◦C), the coupled model gives
lower ac losses. To evaluate different thermal gradients
within the winding we change the feeding current, namely
|I| = 1, 3, 5 A. A higher temperature and, accordingly, a
higher resistivity, opposes the circulation of eddy currents
which in turn means lower ac losses. As a consequence,
the hot-spot temperature is lower when we couple the EM
and thermal problems in this particular scenario. This is
confirmed in Fig. 9(a), where we plot the temperature
along the vertical mid-cross section within the winding
for a feeding current |I| = 5 A at f = 5 kHz. The
match between the fine and homogenised models is again
very good. Using an Intel i7 (3.2 GHz and 32 Gb RAM)
the solution takes 174 s for the fine model (2.17× 105

elements) and 3 s for the homogenised model (2× 103

elements).
At low frequencies the solution of the coupled EM-

thermal problem leads to a higher hot-spot temperature.
This is because the ac effects are smaller and the temper-
ature dependence of ρ implies higher RDC . This is shown
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Fig. 9. Comparison of the temperature distribution along the vertical
mid-cross section within the winding domain for the fine and ho-
mogenised models with ρ(20 ◦C) and ρ(T ) for the case (a) |I| = 5 A
at f = 5 kHz and (b) |I| = 30 A at f = 100 Hz

in Fig. 9(b) where we compare the temperature estimation
with ρ(20 ◦C) or ρ(T ) with a feeding current |I| = 30 A
at f = 100 Hz. In all the temperature profiles of Fig. 9
the difference in the estimation of the hot-spot is within
0.1 ◦C between the homogenised and fine model.

Fig. 9 helps to highlight how different loss profiles
influence the temperature field. The results of Fig. 9(b)
refer to the case of uniformly distributed losses. Here,
the solution given by the homogenised model can be
approximated with a quadratic function. On the contrary, at
high frequencies the losses are concentrated in the neigh-
bourhood of the slot opening, due to the proximity effect.
Accordingly the thermal gradient is linear far from the loss
concentration. Therefore, assuming uniformly distributed
losses Ph = RAC |I|2 in a thermal model under these
conditions leads to an incorrect temperature distribution.

V. CONCLUSION

In this paper we presented an original multiphysics
homogenisation of an electrical machine slot, coupling
EM and thermal homogenisation techniques for the es-
timation of conduction losses and the related tempera-
ture distribution. The method was applied to a reference
electrical machine open slot. The results obtained after
the homogenisation are in very good agreement compared
to a fine model (hot-spot ∆T < 0.1 ◦C), over a wide
range of frequencies. As shown in this paper, a mul-
tiphysics analysis is necessary for a proper assessment

of the losses and the hot-spot temperature. This coupled
analysis is made computationally affordable with the use
of the proposed multiphysics homogenisation. Moreover,
the temperature distribution given by the fine model can
be reconstructed from the homogenised model by post-
processing the solution.

The method can be applied to any symmetrical wire
shape and periodic wire distribution or to different applica-
tions, such as transformers, magnetic components in power
electronics, or actuators. This is confirmed by the high
accuracy of the method over a wide range of frequencies.
The technique presented in this paper can be extended to
include non-steady state behaviour, or to 3D geometries
including for example the homogenisation of laminations
for an efficient estimation of the flux distribution in the
core at high frequencies. It could be also interesting
to employ the MS method, here used for the thermal
homogenisation, to the EM problem.
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