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Abstract. We consider a polymeric spherical platform containing a solid dispersed drug that is
in contact with a solvent fluid. While swelling, a non-Fickian sorption of the solvent molecules occurs
induced by the effect of the viscoelastic properties of the polymer. The solid drug in contact with
the solvent fluid dissolves and a Fickian release of dissolved drug takes place. The fluid entrance, the
drug dissolution, and the drug release to an external environment are described by a system of PDEs
complemented with an equation for the swelling front, initial, and boundary conditions. The model
includes the two major factors that govern a swelling process of a polymeric platform within a release
medium: the cross-link density and the concentration of the external medium. Energy estimates
for the mass of solvent fluid and of undissolved and dissolved drug in the polymeric platform are
established. Numerical simulations that illustrate the theoretical results are also included.
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1. Introduction. Polymeric drug delivery platforms are nowadays of common
use, because they can be designed with prescribed properties that lead to an optimized
drug release. When a homogeneous and isotropic polymeric platform containing a
homogeneously distributed drug is inside a reservoir with a solvent fluid, a set of
complex phenomena occur:

(i) the solvent molecules are absorbed due to a concentration gradient;
(ii) the polymer swells and a pressure gradient arises;
(iii) the solvent molecules induce a dissolution process;
(iv) the dissolved drug molecules diffuse through the platform and leave it to the

reservoir, where they continue to diffuse.
During the absorption of the fluid, the liquid strains the polymeric matrix, which,

while swelling, exerts a stress that acts as a barrier to the incoming fluid. The swelling
of the platform depends on the cross-link density of the polymer, which is the density
of bonds between different polymeric chains per unit volume, and on the hydrophilic
content of the system [19]. We assume that the molecules in the system are not
charged. This means that swelling depends mainly on the Young modulus E of the
polymer---which is proportional to the cross-link density---and on the available amount
of solvent.
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RELEASE FROM VISCOELASTIC SWELLING PLATFORMS

As the fluid permeates the polymeric structure, the polymeric chains deform, and
so stress builds up in the polymer. This stress generates an anticonvective flux on the
fluid, pushing it from regions of high stress to regions of low stress. Consequently the
fluid transport is driven by a concentration gradient and a stress gradient.

There is a well-established theory for diffusion in solids when the diffusion is
stress-assisted. This theory extends the classical theory of diffusion by considering
non-Fickian diffusion processes through deforming elastic and inelastic solids. The
first unifying approach was presented in [2] and in [23]. As a departing point, the au-
thors considered the mass and momentum conservation equations, involving the stress
tensor Ts---of the diffusive substance in itself---and a diffusive force that measures the
force exerted on the fluid by the solid platform. Considering specific forms for Ts
and for the diffusive force, different models have been established in the literature. In
particular they obtained

(1) J\ell =  - D(S, c\ell )\nabla c\ell +Dv(c\ell )\nabla \sigma ,

\sigma = trace(S), S =  - \phi (Ts, c\ell ), where \phi is a linear function of Ts and c\ell represents the
fluid concentration. We note that it was not a priori assumed by Aifantis that stress
affects diffusion only through its hydrostatic component. The dependence of the flux
on the stress tensor trace was obtained a posteriori in a rigorous way as a consequence
of the stress-assisted diffusion theory developed in [2].

A different approach is followed by Cox and Cohen in [7]. These authors assume
that the flux of the permeant fluid can be defined by

(2) J\ell =  - D(c\ell )\nabla \psi ,

where \psi represents the chemical potential. Then using the form of the chemical
potential established experimentally by Thomas and Windle in [24], they derive an
expression analogous to (1).

A large number of authors, while studying diffusion in polymeric matrices, have
followed one of the two preceding approaches, using expressions of the form (1) for
the flux. We mention, without being exhaustive, [4], [5], [6], [8], [9], [10], [11], [12],
[13], [14], [17], and [22]. All these approaches have in common the idea that the total
solvent mass flux J\ell has two main contributions: a Fickian one, depending on the
concentration gradient, and a non-Fickian one proportional to the stress gradient.
Accordingly the total flux is described as in (1). In [7] the authors refer to \sigma as the
stress, whereas in fact it represents the trace of the stress. The designation has been
generally adopted by the authors working in diffusion in viscoelastic polymers. In the
present manuscript when we refer to stress as a scalar; in fact, we mean the trace of
the stress, which is \sigma = trace(S).

Following the previous approaches, we consider that the total solvent mass flux J\ell 
has two main contributions: a Fickian one, depending on the concentration gradient,
and a non-Fickian one proportional to the stress trace gradient defined as

(3) J\ell (x, t) = J\ell ,F (x, t) + J\ell ,nF (x, t), x \in \Omega (t), t > 0,

where \Omega (t) = Br(t)(0) denotes a 3D polymeric sphere with radius r(t) and centered
at the origin, and

(4) J\ell ,F (x, t) =  - D\ell \nabla c\ell (x, t)

and

(5) J\ell ,nF (x, t) =  - Dv\nabla \sigma (x, t)
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denote the Fickian and non-Fickian parts of the solvent mass flux, respectively. In the
previous definitions D\ell = D\ell (c\ell ), Dv = Dv(c\ell ) denote the diffusion and the viscoelas-
tic diffusion coefficients, respectively [13], c\ell represents the solvent concentration, and
\sigma stands for the trace of the stress tensor.

In [12] a 3D mathematical model that describes the drug release from a swelling
polymeric cylinder was presented. The proposed mathematical model, defined by a
system of PDEs coupled with a mathematical law for the moving domain, was nu-
merically validated, but no mathematical analysis was included there. In the present
paper we consider a closed system: a spherical polymeric matrix inside a spherical
reservoir filled with a solvent fluid, suitable for simulating in vivo drug release. The
physical problem is described by a set of PDEs for the drug and the solvent in the
polymeric structure and for the dissolved drug in the reservoir. This system is coupled
with convenient interface and boundary conditions and complemented by a moving
domain condition. A theoretical analysis and a computational study are carried on.
The fact that the system is closed has two main implications:

(i) the solvent content of the external medium can be viewed as a parameter and
its influence on drug release can be studied;

(ii) the conservation of the total mass leads to a simple relation between the
swelling rate and the permeability.

The aim of this paper is to study the drug release from a spherical viscoelastic
polymeric platform \Omega (t), isotropic, homogeneous with an iffnitial radius R0, where
a drug is initially uniformly dispersed. The device is inside another sphere, \Omega e =
B \=R(0)---which defines the closed system---of constant radius \=R containing a resident
fluid uniformly distributed in the external medium (Figure 1).

Fig. 1. A closed system: a polymeric sphere with initial radius R0 (brown color), containing
dispersed drug, that swells inside a sphere with fixed radius \=R containing a solvent. (Color available
online.)

We assume that the polymeric platform swells upon contact with the resident
solvent with radius r(t). We also consider the following assumptions:

(i) the viscoelastic behavior can be described by a generalized Maxwell--Wiechert
model;

(ii) the viscoelasticity induces a resistance to the solvent uptake;
(iii) the permeation of solvent in the sphere is governed by a non-Fickian diffusion;
(iv) the platform erosion is considered negligible;
(v) drug dissolution and Fickian drug diffusion take place in the swollen polymer;
(vi) drug diffusion occurs in the spherical surrounding environment.
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The previous assumptions can be used to describe release from a polymeric drug
delivery device that is inside an organ, as, for example, the stomach, containing a
significant amount of solvent. Such a device can also be seen as an implant inside of a
tissue where the solvent is the interstitial fluid that occupies the extracellular space.

Let \Omega (t) be the swollen polymeric domain at time t. The evolution of the solvent
concentration c\ell , undissolved drug cud, and dissolved drug cd concentrations in \Omega (t),
for t \in (0, T ], T > 0, are described by the following system of PDEs:

(6)

\left\{    
 

\partial c\ell 
\partial t

= \nabla .(D\ell \nabla c\ell ) +\nabla .(Dv\nabla \sigma ),
\partial cd
\partial t

= \nabla .(Dd\nabla cd) + f(cud, cd, c\ell ),

\partial cud
\partial t

=  - f(cud, cd, c\ell ).

In (6) the reaction term f describes the kinetics of the undissolved and dissolved
drugs. Assuming that the time variation of undissolved drug cud is proportional to
the difference between cud and cd, then f is given by

(7) f(cud, cd, c\ell ) = H(cud)kd
cud  - cd
cud

c\ell ,

where H(cud) denotes the Heaviside function, and kd denotes the dissolution constant
rate of the drug [12], [18]. Otherwise, if we consider that the time variation of the
undissolved drug is proportional to the difference between drug solubility csol and cd,
then f is given by a Noyes--Whitney-type relation,

(8) f(cud, cd, c\ell ) = kdH(cud)
csol  - cd
csol

c\ell ,

where we assume that csol is constant in time [6], [17], [20], [21]. Moreover, as the
dissolved drug diffuses only when the solvent has permeated the matrix, we assume
that its time-space evolution is described by the classical diffusion equation.

The evolution of the dissolved drug cde in the external medium outside the swelling
platform, that is, in \Omega c,e = \Omega e  - \Omega (t) for t \in (0, T ], is described by

(9)
\partial cde
\partial t

= \nabla .(Dde\nabla cde).

The diffusion coefficients D\ell , Dd in (6) are given by the Fujita equation D\ell =
Deq\ell exp

\bigl( 
 - \beta \ell 

\bigl( 
1 - c\ell 

c\ell e

\bigr) \bigr) 
, Dd = Dde exp

\bigl( 
 - \beta d

\bigl( 
1 - c\ell 

c\ell e

\bigr) \bigr) 
, where Deq\ell and Dde denote

the diffusion coefficients of the liquid solvent and of the dissolved drug in the fully
swollen sample, respectively; c\ell e denotes the solvent concentration in the exterior of
\Omega (t) that is assumed constant; and \beta \ell , \beta d denote dimensionless positive constants
[16]. We remark that when the solvent concentration is in equilibrium in the closed
system, then c\ell = c\ell e.

As in [12], we assume that the stress \sigma in (5) is defined by the Boltzmann integral

(10) \sigma (t) =  - 
\int t

0

E(t - s)
\partial \epsilon 

\partial s
(s)ds,

and the viscoelastic behavior of the polymer is described by a generalized Maxwell--
Wiechert model; that is, the modulus E(s) in (10) is given by

(11) E(s) = E0 +
m\sum 
j=1

Eje
 - s

\tau j ,
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where Ej 's, j = 1, . . . ,m, are the Young modulus of the Maxwell fluid arms, the
relaxation times \tau j are given by \tau j =

\mu j

Ej
, where \mu j represents the viscosity, and E0

stands for the Young modulus of the free spring. For t = 0 the Young modulus of the
polymer is \^E =

\sum m
j=0Ej , and upon swelling it decreases steadily to E0 over time.

Functional relations between the viscoelastic diffusion coefficient Dv and the sol-
vent concentration c\ell were constructed in [13], assuming that the viscoelastic effect
induces a convective flux pointing outwards fromF \Omega (t). In what follows we consider

(12) Dv =
R2

8\^\mu 
c\ell ,

where R stands for the radius of a virtual cross-section of the polymeric sample
available for the convective flux, and \^\mu represents the viscosity of a polymer-solvent
solution characterized by a solvent concentration c\ell .

The main idea underlying expression (12) is the following: the polymer opposes
the fluid permeation through the existence of an ``anticonvective"" field. The non-
Fickian flux JNF can be interpreted as being generated by this anticonvective field
and is represented by

JNF = vc\ell ,

where v stands for the velocity. As JNF is induced by the scalar stress \sigma , we have

 - Dv(c\ell )\nabla \sigma = vc\ell .

Then, using Darcy's law, we conclude that Dv(c\ell ) = Kc\ell , where K represents
the hydraulic conductivity (see, for instance, [3], [4], [5], [15]). Other approaches can
be used to explain the non-Fickian flux, such as those presented in, for instance, [17],
[18], and [19].

Let us assume that c\ell (0) = 0 in \Omega (0). Then from the first equation of (6), the
definition of the stress \sigma (10), and considering that the strain \epsilon depends on the solvent
concentration c\ell , that is, \epsilon = g(c\ell ), we deduce for the solvent concentration c\ell the
following integro-differential equation:

(13)
\partial c\ell 
\partial t

= \nabla .
\Bigl( \bigl( 
D\ell  - Dv

\^Eg\prime (c\ell )
\bigr) 
\nabla c\ell +\nabla .

\Bigl( 
Dv

\int t

0

ker(t - s)g\prime (c\ell (s))\nabla c\ell (s) ds
\Bigr) \Bigr) 
,

where \^E =
\sum m

j=0Ej , ker(s) =
\sum m

j=1
Ej

\tau j
e
 - s

\tau j . At the moving boundary \partial \Omega (t) we

assume the following boundary conditions:

(14)

J\ell (c\ell (t)).\eta = \alpha (c\ell (t) - c\ell e),
Jd.\eta (cd(t)) = Jde(cde(t)).\eta ,
cd(t) = cde(t),
cud(t) = 0,

where \eta denotes the exterior unitary normal to \Omega (t), \alpha represents a permeability
constant, and

J\ell (c\ell ) =  - 
\Bigl( 
D\ell  - Dv

\^Eg\prime (c\ell )
\Bigr) 
\nabla c\ell  - Dv

\int t

0

ker(t - s)g\prime (c\ell (s))\nabla c\ell (s) ds,

Jd(cd) =  - Dd\nabla cd,
Jde(cde) =  - Dde\nabla cde.
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We consider that \Omega e is isolated; that is, we assume that no drug flux passes through
\partial \Omega c,e  - \partial \Omega (t),

(15) Jde(cde(t)).\eta = 0 on \partial \Omega c,e  - \partial \Omega (t),

where \eta denotes the exterior unitary normal to \Omega e.
Summarizing, we describe the drug release by a system of PDEs defined in a time-

dependent domain: the integro-differential equation (13) for the absorbed solvent
concentration c\ell , the second equation of (6) for the drug concentration cd, and the
third equation in (6) for the undissolved drug concentration cud. This system is
coupled with the diffusion equation (9) in \Omega c,e. The two problems are complemented
by the interface conditions (14) at the interface \partial \Omega (t) and the boundary condition
(15) at \partial \Omega c,e  - \partial \Omega (t). Concerning initial conditions, we assume that

(16)
c\ell (x, 0) = 0, cud(x, 0) = c0, cd(r, 0) = 0, x \in \Omega (0),

cde(x, 0) = 0, c\ell (x, 0) = c\ell e, x \in \Omega e  - \Omega (0).

To complete the initial boundary value problem, a moving front condition should be
imposed. To define the moving front \partial \Omega (t), a consequence of the swelling, we observe
that the volume of the sphere \Omega (t) at each time t is the sum of the absorbed solvent
fluid volume with the dissolved and undissolved volume of drug and the initial dry
polymeric volume. Then

(17) | \Omega (t)| =
\int 
\Omega (t)

\Bigl( c\ell (x, t)
\rho \ell 

+
cud(x, t) + cd(x, t)

\rho d

\Bigr) 
dx+

mp

\rho p
,

where | \Omega (t)| denotes the volume of the sphere \Omega (t); \rho \ell , \rho d, \rho p represent the solvent,
drug, and polymer densities; and mp represents the initial mass of dry polymeric
matrix.

An Eulerian description of the balance laws in the two-phase domains has been
used: the fluid problem is given in its natural Eulerian framework, and the solid
problem is also written in Eulerian coordinates, such that both subproblems are for-
mulated in a swelling current configuration \Omega (t). Following this approach no solid
velocity of the bulk polymer is included in the equations: the concentrations ci, for
i = \ell , d, ud, de, are functions of x and t for x \in \Omega (t). With this modeling option the
system is closed in the sense that we have 4 equations and 4 variables in the swollen
sphere. This approach was introduced by the authors in [12] and [13].

An alternative modeling option is based on defining a velocity vS = \partial u
\partial t , where u

denotes the displacement of the polymer. In this case a relation between the u and \epsilon ,
such as, for example,

\epsilon =
1

2
(\nabla u+\nabla uT ),

should be used, and to close the system a relation between stress and strain should be
adopted. In problems of solid mechanics, the displacements are usually represented
in Lagrangian coordinates, such that the computational domain is always fixed. In
this case a convective term would appear in the concentration equations. Another
aspect concerning this approach is that a new unknown (u) is added and another
equation---conservation of momentum---should be considered to close the system.

Our main goal is to study the behavior of the previous initial boundary value
problem. We start our analysis by establishing in section 2 the type of dependence of
the strain on the solvent concentration. A condition that relates the front velocity with

6
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the permeability coefficient in (14) is deduced in section 3 from the mass conservation
of the closed system \Omega e. In section 4 an L2 energy estimate is deduced neglecting the
swelling. In section 5 numerical experiments illustrating the qualitative behavior of
the mathematical model, when f is defined by the Noyes--Whitney expression (8), are
included. Finally, in section 6 we present some conclusions, and in section 7 the proof
of the L2 energy estimates stated in section 4 is presented.

2. Strain versus solvent concentration. In this section we establish a func-
tional relation between the strain and the solvent concentration for spherical domains
\Omega (t) that is different from the one introduced in [13], where \epsilon = c\ell 

\rho \ell  - c\ell 
was established

for an open system composed by a swelling cylinder.
Let V0 represent the volume of a local sphere with radius r0 that, after swelling,

due to solvent absorption, has volume Vn and radius r. Let V\ell be the volume of the
absorbed solvent. Assuming that the mixture of the polymer and the solvent occur in
an ideal manner, the final volume of the swollen sphere is represented by Vn = V0+V\ell .
We observe that the correct equation is

Vn = V0 + V\ell  - Vd,

where Vd stands for the volume of the drug that has been released in the exterior
medium. Due to the very small dimension of drug molecules, Vd \ll V0 + V\ell , and
consequently the approximation for Vn used is acceptable. As \epsilon is defined by \epsilon = r - r0

r0

with r0 =
\bigl( 

3
4\pi V0

\bigr) 1/3
and r =

\bigl( 
3
4\pi Vn

\bigr) 1/3
=

\bigl( 
3
4\pi (V0 + V\ell )

\bigr) 1/3
, we obtain

(18) \epsilon =
\Bigl( 
1 + \~e

\Bigr) 1/3

 - 1,

where \~e = V\ell 

V0
is an approximation for the volumetric strain e = Vn - V0

V0
.

If m\ell denotes the mass of the absorbed solvent, then m\ell = V\ell \rho \ell , where \rho \ell 
represents the density of the swelling fluid. As c\ell = m\ell 

V0+V\ell 
, where c\ell represents the

mean solvent concentration, then m\ell = (V0 + V\ell )c\ell . Combining the two expressions
for m\ell , we deduce \~e = c\ell 

\rho \ell  - c\ell 
. Finally from (18) we obtain

(19) \epsilon = g(c\ell ) =
\Bigl( \rho \ell 
\rho \ell  - c\ell 

\Bigr) 1/3

 - 1.

In what follows we assume that g is defined by (19).

3. Mass conservation and the swelling front. To obtain an explicit expres-
sion for the moving front \partial \Omega (t), it is convenient to write the differential problem in
spherical coordinates. Let r(t) be the radius of \Omega (t) at time t. Then (6) and (9) admit
the equivalent representation
(20)\left\{ 
 
 

\partial c\ell 
\partial t

=
1

r2
\partial 

\partial r

\Bigl( 
r2
\Bigl( \bigl( 
D\ell  - \^EDvg

\prime (c\ell )
\bigr) \partial c\ell 
\partial r

+Dv

\int t

0

ker(t - s)g\prime (c\ell )
\partial c\ell 
\partial r

(s) ds
\Bigr) \Bigr) 
,

\partial cd
\partial t

=
1

r2
\partial 

\partial r

\bigl( 
r2Dd

\partial cd
\partial r

\bigr) 
+ f(cud, cd, c\ell ),

\partial cud
\partial t

=  - f(cud, cd, c\ell )

for r \in (0, r(t)), t \in (0, T ],

(21)
\partial cde
\partial t

=
1

r2
\partial 

\partial r

\bigl( 
r2Dde

\partial cde
\partial r

\bigr) 
, r \in (r(t), \=R), t \in (0, T ].

7
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From (14), at the moving interface r = r(t) we have

(22)

J\ell (r(t), t) = \alpha (c\ell (r(t), t) - c\ell e),
Jd(r(t), t) = Jde(r(t), t),
cd(r(t), t) = cde(r(t), t),
cud(r(t), t) = 0, t > 0,

with

J\ell (r(t), t) =  - 
\bigl( 
D\ell  - \^EDvg

\prime (c\ell (r(t), t))
\bigr) \partial c\ell 
\partial r

(r(t), t)

 - Dv

\int t

0

ker(t - s)g\prime (c\ell (r(s), s))
\partial c\ell 
\partial r

(r(s), s) ds,

Jd(r(t), t) =  - Dd
\partial cd
\partial r

(r(t), t),

Jde(r(t), t) =  - Dde
\partial cde
\partial r

(r(t), t).

At r = 0, we consider the following symmetry conditions:

(23)
\partial c\ell 
\partial r

(0, t) =
\partial cd
\partial r

(0, t) = 0, t > 0.

The boundary condition (15) is equivalent to the following condition at r = R:

(24) Jde(R, t) = 0, t > 0.

The initial conditions (16) can be written in the following form:

(25)
c\ell (r, 0) = 0, cud(r, 0) = c0, cd(r, 0) = 0, r \in (0, R0),
cde(r, 0) = 0, c\ell (r, 0) = c\ell e, r \in (R0, \=R).

To define the moving front r(t), a consequence of the swelling, we observe that con-
dition (17) is equivalent to

(26)
4

3
\pi r3(t) = 4\pi 

\int r(t)

0

r2
\Bigl( c\ell (r, t)

\rho \ell 
+
cud(r, t) + cd(r, t)

\rho d

\Bigr) 
dr +

mp

\rho p
.

In spherical coordinates, the evolution of c\ell , cud, cd, and cde is defined by the integro-
differential system (20) in (0, r(t)), the diffusion equation (21) in (r(t), R), the interface
condition (22) at r = r(t), the boundary condition (23) at r = 0, the condition (24)
at r = R, and the initial conditions (25).

It should be remarked that \sigma is in equilibrium with a certain function F that can
be seen as a force induced by the solvent permeation. In fact, we observe that the
first equation of (20) can be rewritten in the following equivalent form:

\partial c\ell 
\partial t

(r, t) =
1

r2
\partial 

\partial r

\Bigl( 
r2
\Bigl( 
D\ell (c\ell (r, t))

\partial c\ell 
\partial r

(r, t) +Dv(c\ell (r, t))
\partial \sigma 

\partial r
(r, t)

\Bigr) \Bigr) 
.

Then, integrating this last equation in [0, r], we obtain successively

\partial \sigma 

\partial r
(r, t) =

1

Dv(c\ell (r, t))

\Bigl( 1

r2

\int r

0

w2 \partial c\ell 
\partial t

(w, t)dw  - D\ell (c\ell (r, t))
\partial c\ell 
\partial r

(r, t)
\Bigr) 

=  - F.

8
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The conservation of mass in the closed system \Omega e = \=B \=R(0) leads to a relationship
between the mass transfer coefficient \alpha and the front velocity r\prime (t). This relation is
established in what follows.

Let M be the total mass in \Omega e. Then

M(t) =

\int 
\Omega (t)

\Bigl( 
c\ell (x, t) + cud(x, t) + cd(x, t)

\Bigr) 
dx+

\int 
\Omega c,e(t)

\Bigl( 
c\ell e + cde

\Bigr) 
dx,

which, in spherical coordinates, admits the representation

(27) M(t) = 4\pi 

\int r(t)

0

r2
\Bigl( 
c\ell + cud + cd

\Bigr) 
dr + 4\pi 

\int \=R

r(t)

r2
\Bigl( 
c\ell e + cde

\Bigr) 
dr.

From (27), as c\ell e is assumed constant, we obtain

(28)

M \prime (t) = 4\pi r2(t)r\prime (t)
\Bigl( 
c\ell (r(t), t) + cud(r(t), t) + cd(r(t), t)

\Bigr) 
+ 4\pi 

\int r(t)

0

r2
\Bigl( \partial c\ell 
\partial t

+
\partial cud
\partial t

+
\partial cd
\partial t

\Bigr) 
dr

 - 4\pi r2(t)r\prime (t)
\Bigl( 
c\ell e + cde(r(t), t)

\Bigr) 
+ 4\pi 

\int \=R

r(t)

r2
\partial cde
\partial t

dr.

Now, combining (28) with the interface conditions (14) and the differential equations
(20) and (21), we establish

M \prime (t) = 4\pi r2(t)r\prime (t)
\Bigl( 
c\ell (r(t), t) - c\ell e

\Bigr) 
 - 4\pi 

\int r(t)

0

\partial 

\partial r

\Bigl( 
r2(J\ell + Jd)

\Bigr) 
dr

 - 4\pi 

\int \=R

r(t)

\partial 

\partial r

\Bigl( 
r2Jde

\Bigr) 
dr,

that is,

(29)

M \prime (t) = 4\pi r2(t)r\prime (t)
\Bigl( 
c\ell (r(t), t) - c\ell e

\Bigr) 
 - 4\pi 

\Bigl( 
r2(t)(J\ell (r(t), t) + Jd(r(t), t))

\Bigr) 
 - 4\pi 

\Bigl( 
\=R2Jde( \=R, t) - r2(t)Jde(r(t), t)

\Bigr) 
.

Taking into account again the interface conditions (14) and the boundary condition
(24), we finally deduce

(30) M \prime (t) = 4\pi r2(t)
\Bigl( 
r\prime (t) - \alpha 

\Bigr) \Bigl( 
c\ell (r(t), t) - c\ell e

\Bigr) 
.

From (30) we conclude the following result.

Proposition 1. The total mass M is constant in the isolated system \Omega e if and
only if r\prime (t) = \alpha , and in this case

(31) M =
4

3
\pi 
\Bigl( 
R3

0cud(0) + ( \=R3  - R3
0)c\ell e

\Bigr) 
, t \geq 0.

If we consider the open system \Omega (t), then the second and third conditions in (22)
are replaced by Jd = \beta cd, where \beta denotes a permeability constant. If Ms(t) denotes

9
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the total mass in this system, then, proceeding as before to establish the expression
of M \prime (t), we easily obtain

M \prime 
s(t) = 4\pi r2(t)r\prime (t)

\Bigl( 
c\ell (r(t), t) + cd(r(t), t)

\Bigr) 
 - 4\pi r2(t)

\Bigl( 
J\ell (r(t), t) + Jd(r(t), t)

\Bigr) 
,

which leads to

(32)
M \prime 

s(t) = 4\pi r(t)2r\prime (t)
\Bigl( 
c\ell (r(t), t) + cd(r(t), t)

\Bigr) 
 - 4\pi r(t)2

\Bigl( 
\alpha 
\bigl( 
c\ell (r(t), t)

 - c\ell e(r(t), t)
\bigr) 
+ \beta cd(r(t), t)

\Bigr) 
.

From (26) it can be shown that the front speed is given by

(33) r\prime (t) =  - 
\alpha 
\rho \ell 

\bigl( 
c\ell (r(t), t) - c\ell e

\bigr) 
+ \beta cd(r(t),t)

\rho d

1 - 
\bigl( c\ell (r(t),t)

\rho \ell 
+ cd(r(t),t)

\rho d

\bigr) .

Inserting (33) into (32), we get

(34) M \prime 
s(t) = v1(t) + v2(t) - v3(t) - v4(t),

where
v1(t) = 4\pi r(t)2\alpha 

\bigl( 
c\ell e  - c\ell (r(t), t)

\bigr) 
,

v2(t) = 4\pi r(t)2
\alpha 

\rho \ell 

\bigl( 
c\ell e  - c\ell (r(t), t)

\bigr) c\ell (r(t), t) + cd(r(t), t)

1 - 
\bigl( c\ell (r(t),t)

\rho \ell 
+ cd(r(t),t)

\rho d

\bigr) ,
v3(t) = 4\pi r(t)2\beta cd(r(t), t),

v4(t) = \beta 
cd(r(t), t)

\rho d

c\ell (r(t), t) + cd(r(t), t)

1 - 
\bigl( c\ell (r(t),t)

\rho \ell 
+ cd(r(t),t)

\rho d

\bigr) .
From (34) we can interpret the time variation of the mass in the sphere \Omega (t) as the
result of four components: the solvent fluid entrance (v1(t)) and its correction due
to the increasing volume (v2(t)), the drug amount that crosses the boundary \Omega (t)
(v3(t)), and the corresponding correction due to the swelling (v4(t)).

4. Energy estimates. This section aims to provide a stability analysis when
the swelling is instantaneous. The study of stability for a moving boundary problem
remains an open question that we intend to study in the near future. Let \Omega (t) be time
independent, that is, \Omega (t) = \Omega . The evolution of the complete system is defined in \Omega 
by the integro-differential equation (13) for the absorbed solvent concentration c\ell , the
second and the third equations of (6) for cd and cud, respectively; in \Omega c,e = \Omega e - \Omega the
drug evolution is defined by the diffusion equation (9). We remark that in our analysis
we take m = 1, and the sets \Omega and \Omega e, not necessarily open spheres, can be open
domains with \Omega \subset \Omega e. The two problems are complemented by the interface condi-
tions (14) at the interface \partial \Omega , the boundary conditions (15), and the initial conditions
(16). To simplify the presentation, constant diffusion coefficients are considered. The
generalization for non--constant diffusion coefficients is straightforward.

We begin by introducing some notation. By (., .)L2(B , \| .\| L2(B), (., .)L2(B)\times L2(B),
and \| .\| L2(B)\times L2(B) we denote the usual inner products and corresponding norms. We
recall that the so-called trace inequality holds: there exists a positive constant Ctr such
that for all v \in H1(\Omega ), \| v\| L2(\partial \Omega ) \leq Ctr\| v\| 1, where \| .\| 1 represents the usual norm
in the Sobolev space H1(\Omega ). Let L\infty (0, T, L2(\Omega )) be the space of functions v defined

10
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from [0, T ] into L2(\Omega ) such that ess sup[0,T ] \| v(t)\| L2(\Omega ) < \infty , and \| v\| L\infty (0,T,L2(\Omega )) =
ess sup[0,T ] \| v(t)\| L2(\Omega ). The previous norm is denoted by \| .\| L\infty (L2).

Let En(t) be the functional energy defined by

(35) En(t) =
\sum 

i=\ell ,d,ud

\| ci(t)\| 2L2(\Omega ) + \| cde(t)\| 2L2(\Omega c,e)
.

The energy En(t) is defined for weak solutions of the problem:
find (c\ell (t), cd(t), cud(t), cde(t)) \in (H1(\Omega ))2 \times L2(\Omega )\times H1(\Omega c,e) such that

(36) \sum 
j\in \{ \ell ,ud,d\} 

\Bigl( \partial cj
\partial t

(t), vj

\Bigr) 
L2(\Omega )

+
\Bigl( \partial cde
\partial t

(t), vd,e

\Bigr) 
L2(\Omega c,e)

=  - (\alpha (c\ell (t) - c\ell e), v\ell )L2(\partial \Omega )

+ (J\ell (c\ell (t)),\nabla v\ell )L2(\Omega )\times L2(\Omega ) + (Jd(cd(t)),\nabla vd)L2(\Omega )\times L2(\Omega )

+ (Jd,e(cde(t)),\nabla vd,e)L2(\Omega c,e)\times L2(\Omega c,e) + (f(cud(t), cd(t), c\ell (t)), vd  - vud)L2(\Omega )

for all v\ell , vd \in H1(\Omega ), vud \in L2(\Omega ), vd,e \in H1(\Omega c,e).
The energy estimates are established assuming that to have an effective solvent

uptake, the Fickian diffusion should dominate the non-Fickian diffusion and the trans-
ference through the boundary \partial \Omega , that is,

(37) Df,nf = Dd  - \^EDv\| g\prime (c\ell )\| L\infty (L2)  - \alpha C2
tr > 0.

Let \epsilon i, i = 1, 2, be such that

(38) \gamma 1(c\ell ) = Df,nf  - \epsilon 21C
2
tr  - \epsilon 22 > 0.

In the next result we establish upper bounds for the energy En(t) depending on the
dissolution reaction. The proof is given in the appendix.

Proposition 2. For t \in (0, T ], let (c\ell (t), cd(t), cud(t), cde(t)) in (H1(\Omega ))2\times L2(\Omega )
\times H1(\Omega c,e) be such that the boundary conditions (14) and (15) hold on \partial \Omega and \partial \Omega c,e - 
\partial \Omega , respectively, and (16) and (36) are satisfied. If g\prime (c\ell ) \in L\infty (0, T, L2(\Omega )) and
conditions (37), (38) hold, then there exist positive constants Ci, i = 1, 2, such that
for En(t) defined by (35) we have

(39)

1

2

d

dt

\Bigl( \sum 
i=d,ud

\| ci(t)\| 2L2(\Omega ) + \| cde(t)\| 2L2(\Omega c,e)

\Bigr) 
=  - Dd\| \nabla cd(t)\| 2L2(\Omega )\times L2(\Omega )  - Dd,e\| \nabla cde(t)\| 2L2(\Omega c,e)\times L2(\Omega c,e)

+ (F (t), cd(t) - cud(t))L2(\Omega ),

where F (t) = f(cud(t), cd(t), c\ell (t)).
1. If f is given by (7), then (F (t), cd(t) - cud(t))L2(\Omega ) \leq 0 and

(40)

En(t) +

\int t

0

\| \nabla c\ell (s)\| 2L2(\Omega )\times L2(\Omega )ds+ 2Dd

\int t

0

\| \nabla cd(s)\| 2L2(\Omega )\times L2(\Omega )ds

+ 2Dd,e

\int t

0

\| \nabla cde(s)\| 2L2(\Omega c,e)\times L2(\Omega c,e)
ds

\leq C1e
C2t(\alpha c\ell e| \partial \Omega | )2t+ \| cud(0)\| 2L2(\Omega ), t \in [0, T ].

11
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2. If f is given by (8), then

(41)

En(t) +

\int t

0

\| \nabla c\ell (s)\| 2L2(\Omega )\times L2(\Omega )ds+ 2Dd

\int t

0

\| \nabla cd(s)\| 2L2(\Omega )\times L2(\Omega )ds

+ 2Dd,e

\int t

0

\| \nabla cde(s)\| 2L2(\Omega c,e)\times L2(\Omega c,e)
ds

\leq e
kd

\bigl( 
1+ 1

c2
sol

\bigr) \surd 
C1\alpha | \partial \Omega | c\ell e

\int t
0

\surd 
se

C2
2

sds

\Bigl( 
\| cud(0)\| 2L2(\Omega ) + kd

\sqrt{} 
C1\alpha | \partial \Omega | c\ell e

\int t

0

\surd 
se

C2
2 sds

\Bigr) 
+ C1e

C2t(\alpha c\ell e| \partial \Omega | )2t, t \in [0, T ].

Note that when the dissolution reaction is defined by (7), then
\sum 

i\in \{ ud,d\} \| ci(t)\| 2L2(\Omega )

is a decreasing function in t. However, if the dissolution reaction is given by (8), then
we just prove that this term is bounded. Numerically we will illustrate that, for a
large set of parameters used in the experiments, En(t) is a decreasing function also
in this last case.

Proposition 2 implies the stability with respect to the initial conditions of the
initial boundary value problem (14), (15), (16), and (36). The uniqueness of the weak
solution is also a consequence of this result.

5. Numerical simulation.

5.1. Discrete model. In what follows we introduce a finite difference discretiza-
tion of the initial boundary value problem defined by

(i) the integro-differential system (20) for the evolution of c\ell , cud, cd;
(ii) the kinetics of the undissolved and dissolved drugs as defined by (8);
(iii) the diffusion equation (21) for cde;
(v) the interface conditions (22) at r = r(t);
(vi) the boundary conditions (23) at r = 0 and (24) at r = R;
(vii) the initial conditions (25);
(viii) the moving front defined by (26).
We follow the approach used in [14] and [12]. We start by introducing in the spa-

tial domain [0, \=R] an initial grid \{ ri(0), i = 0, . . . , N(0), . . . , \=N(0)\} , r0(0) = 0, rN(0) =
R0, r \=N (0) = \=R, with stepsize h(0).

In [0, T ] we introduce a uniform grid \{ tn, n = 0, . . . ,M\} , with t0 = 0, tM = T and
stepsize \Delta t. As in each time step tn the swelling front occupies a new position rN(tn),
we introduce in [0, rN(tn)] and [rN(tn),

\=R] new grids \{ ri(tn), i = 0, . . . , N(tn)\} and

\{ ri(tn), i = N(tn), . . . , N(tn)\} , respectively, that can be nonuniform, with stepsize
hi(tn) = ri(tn) - ri - 1(tn), where r - 1(tn) =  - r1(tn) and r \=N+1(tn) = \=R+ h \=N (tn).

By Mh we represent the average operator Mhvh(ri) =
1
2 (vh(ri - 1) + vh(ri)). We

also consider the finite difference operator

D\ast 
h(vh)(ri) =

vh(ri+1/2) - vh(ri - 1/2)

ri+1/2  - ri - 1/2
, Dh(vh)(ri - 1/2) =

vh(ri) - vh(ri - 1)

ri  - ri - 1
,

where ri+1/2 = ri +
hi+1

2 , ri - 1/2 = ri  - hi

2 . By D - t we denote the time backward
finite difference operator.

Let cn\ell ,i, c
n
d,i, c

n
ud,i, c

n
de,i be the numerical approximations for the correspondent

variables at (ri(tn), tn). To introduce the discretization of the diffusion equations in

12
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(20) we observe that the integro-differential equation in this system can be rewritten
in the following equivalent form:

\partial c\ell 
\partial t

(r, t) =
1

r2
\partial 

\partial r

\Bigl( 
r2
\Bigl( 
D\ell (c\ell (r, t))

\partial c\ell 
\partial r

(r, t) +Dv(c\ell (r, t))
\partial \sigma 

\partial r
(r, t)

\Bigr) \Bigr) 
.

This equation is replaced by the following implicit-explicit finite difference equation:

(42) D - tc
n+1
\ell ,i =

1

ri(tn)2
D\ast 

h

\Bigl( 
Mh(ri(tn)

2)
\Bigl( 
Dn

\ell ,iDhc
n+1
\ell ,i +Dn

v,iDh\sigma 
n
\ell ,i

\Bigr) \Bigr) 
,

and Dn
\ell ,i = D\ell (Mh(c

n
\ell ,i)), D

n
v,i = Dv(Mh(c

n
\ell ,i)) for i = 0, . . . , N(tn+1)  - 1. In the last

finite difference equation we take cn\ell ,i = 0 for i = N(tn), . . . , N(tn+1) and r
j
 - 1 =  - rj1,

j = n, n+ 1.
The diffusion equation in (20) for dissolved drug concentration cd in \Omega (tn+1) is

replaced by the finite difference equation

(43) D - tc
n+1
d,i =

1

ri(tn)2
D\ast 

h

\Bigl( 
Mh(ri(tn)

2)Dn
d,iDhc

n+1
\ell ,i

\Bigr) 
+ f(cnud,i, c

n
d,i, c

n+1
\ell ,i ),

for i = 0, . . . , N(tn+1)  - 1, where cnd,i = 0, for i = N(tn), . . . , N(tn+1), and rj - 1 =

 - rj1, j = n, n+ 1.
Finally, to compute cnud,i we solve the finite difference equation

(44) D - tc
n+1
d,i =  - f(cn+1

ud,i , c
n+1
d,i , cn+1

\ell ,i )

for i = 1, . . . , N(tn+1) - 1, where cnd,i = 0 for i = N(tn), . . . , N(tn+1).
The approximation for the drug concentration in the surrounding sphere is given

by

(45) D - tc
n+1
de,i =

1

ri(tn)2
D\ast 

h

\Bigl( 
Mh(ri(tn)

2)DdeDhc
n+1
\ell ,i

\Bigr) 
for i = N(tn+1) + 1, . . . , N  - 1.

To compute cn\ell ,i in (43) we should first compute \sigma n
i . We remark that from (10),

(11), and (19) we have

\sigma (r(t), t) =  - g(c\ell (r(t), t)) \^E +

\int t

0

E\prime (t - s)g(c\ell (r(s), s)) ds,

which leads to

\sigma (ri(tn), tn) =  - g(c\ell (ri(tn), tn)) \^E +

\int tn - 1

0

E\prime (tn  - s)g(c\ell (ri(s), s))

+

\int tn

tn - 1

E\prime (tn  - s)g(c\ell (ri(s), s)) ds.

So, we consider the composed trapezoidal rule

(46) \sigma n
i =  - g(cn\ell ,i) \^E + Sn - 1

i +
\Delta t

2

\Bigl( \Bigl( m\sum 
j=1

Ej

\tau j

\Bigr) 
g(cn\ell ,i) + \eta n - 1g(c

n - 1
\ell ,i )

\Bigr) 
,

where

Sn - 1
i = \Delta t

\Bigl( 1
2
\eta 0g(c

0
\ell ,i) +

n - 2\sum 
k=1

\eta kg(c
k
\ell ,i) +

1

2
\eta n - 1g(c

n - 1
\ell ,i )

\Bigr) 
,

13
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with

\eta 0 =
m\sum 
j=1

Ej

\tau j
e
 - n\Delta t

\tau j , \eta k =
m\sum 
j=1

Ej

\tau j
e
 - (n - k)\Delta t

\tau j , \eta n - 1 =
m\sum 
j=1

Ej

\tau j
e
 - \Delta t

\tau j .

We specify in what follows the discretization of the interface conditions (22) and
boundary conditions (23) and (24).

At the interface grid boundary point rN(tn+1) we assume the following:

(47)

Dn
\ell ,iD - hc

n+1
\ell ,N(tn+1)

+Dn
v,iD - h\sigma 

n+1
N(tn+1)

= \alpha (cn+1
\ell ,N(tn+1)

 - c\ell e),

Dn
d,iD - hc

n+1
d,N(tn+1)

= DdeD - hc
n+1
de,N(tn+1)+1,

cn+1
d,N(tn+1)

= cn+1
de,N(tn+1)

,

cn+1
ud,N(tn+1)

= 0,

whereD - h denotes the backward finite difference operator with respect to the variable
r. The first finite difference equation in (47) is established assuming that \sigma n+1

N(tn+1)
= 0.

By Dc we denote the usual first order centered finite difference operator. Then
the boundary conditions at r = 0 are replaced by

(48) Dcc
n+1
\ell ,0 = 0, Dcc

n+1
d,0 = 0.

At r = \=R we consider

(49) D - hc
n+1
de, \=N

= 0.

To define the new front position we remark that from (22) and (26) we obtain

r\prime (t) =
1

1 - 
\bigl( c\ell (r(t),t)

\rho \ell 
+ cd(r(t),t)

\rho d

\bigr) 
\Bigl( 1

\rho \ell 

\Bigl( 
D\ell (c\ell (r(t), t))

\partial c\ell 
\partial r

(r(t), t) +Dv(c\ell (r(t), t))
\partial \sigma \ell 
\partial r

(r(t), t)
\Bigr) 

+
1

\rho d
Dd(c\ell (r(t), t))

\partial cd
\partial r

(r(t), t)
\Bigr) 
.

Then we consider for the front position at time level tn+2 the following finite difference
equation:

(50)

rN(tn+2)  - rN(tn+1)

\Delta t
=

1

1 - 
\bigl( cn+1

\ell ,N(tn+1)

\rho \ell 
+

cn+1
d,N(tn+1)

\rho d

\bigr) 
\Bigl( 1

\rho \ell 

\bigl( 
Dn+1

\ell ,N(tn+1)
Dcc

n+1
\ell ,N(tn+1)

+Dn+1
v,N(tn+1)

D - h\sigma 
n+1
\ell ,N(tn+1)

\bigr) 
+

1

\rho d
Dn+1

d,N(tn+1)
Dcc

n+1
d,N(tn+1)

\Bigr) 
.

The finite difference scheme (43)--(50) is completed with the initial conditions

(51)
c0\ell ,i = 0, c0ud,i = c0, c

0
d,i = 0, i = 0, . . . , N(0) - 1,

c0de,i = 0, i = N(0) + 1, . . . , \=N  - 1.

14
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5.2. Numerical results. In this section we present some numerical simulations
that illustrate our results. We consider a polymeric sphere with initial radius R0 =
10 - 3m, where a solid drug is dispersed with an initial concentration c0 = 1kg/m

3

and solubility csol = 1kg/m
3
. This sphere is inside a closed system represented by a

second sphere with radius \=R = 3\times 10 - 3m. In \Omega e  - \Omega (t) the solvent concentration c\ell e
is constant c\ell e = 755.74kg/m

3
.

The viscoelastic behavior of the polymeric sphere is described by the Maxwell--
Wiechert model (11) with one Maxwell arm (m = 1) with Young modulus E1 = 103Pa
and relaxation time \tau 1 = 250s. The Young modulus of the free spring is E0 = 103Pa.
We also take \^\mu = 106Pa s for the viscosity of the polymer-solvent solution.

The following parameters are used: kd = 10 - 2s - 1 in the dissolution reaction, \beta \ell =
0.8, \beta d = 0.5 in the diffusion coefficients D\ell , Dd, respectively, Deql = 3.74\times 10 - 9m2/s

and Dde = 2.72 \times 10 - 10m2/s, the densities \rho \ell = 103kg/m
3
, \rho d = 1400kg/m

3
, and

\rho p = 1175kg/m
3
.

In the numerical calculations, constant stepsizes were used: in the radius hi(tn) =
10 - 5 and in time \Delta t = 10 - 4.
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Fig. 2. Behavior of the energy En(t).

In Figure 2 we present the behavior of the energy En(t) for the dissolution reac-
tion defined by (8). We observe that En(t) decreases in time. We remark that for f
defined by (7) we proved in Proposition 2 that

\sum 
i\in \{ ud,d\} \| ci(t)\| 2L2(\Omega ) decreases and

for the dissolution reaction f given by (8) only the boundedness of this term was
shown. We exhibit in what follows plots of the different concentrations that illustrate
the physical soundness of the model. In Figure 3 we plot the solvent concentration
c\ell . As the swelling front advances, the solvent concentration increases inside the poly-
meric sphere. For large times an interior-exterior solvent concentration equilibrium is
observed.

The behavior of the dissolved drug is illustrated in Figure 4. As the swelling front
advances, a dissolution front inside of the polymeric sphere recedes. Moreover, higher
dissolved concentration values are observed near the transition point and outside of
the polymer.

In Figure 5 we present an illustration of the behavior of the dissolved drug in the
external medium. As time increases, the swelling front advances and the dissolved
drug outside polymeric sphere increases.

The behavior of the solid drug concentration is illustrated in Figure 6. As t
increases, a decreasing of the solid drug inside the interior sphere is observed. For
large values of t the solid drug is dissolved completely.
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Fig. 3. Behavior of the solvent concentration c\ell in the polymeric sphere.
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Fig. 4. Behavior of dissolved drug concentration cd in the interior polymeric sphere.
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Fig. 5. Concentration of the dissolved drug cde in the external medium \Omega e  - \Omega (t).

As the solvent permeates the polymeric sphere, the opposite force, represented
by | \sigma | , is larger in the region where the polymer is not relaxed, that is, behind the
swelling front. This fact induces an increase in the stress on the left side of the swollen
front and a decrease on the right side, as illustrated in Figure 7.

There are two important factors that influence the swelling of polymers: the
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Fig. 6. Behavior of the solid drug concentration cud in the interior polymeric sphere.
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Fig. 7. Behavior of the stress \sigma in the interior polymeric sphere.

amount c\ell of available release medium and the cross-link density E of the polymer.
Concerning the first factor, the polymeric sphere needs solvent to swell. When the
solvent is not enough, it will be completely absorbed and there will remain no fluid
to act as a diffusion medium. In Figure 8 we exhibit the time evolution of r(t) for
different values of the exterior solvent concentration c\ell e and for E0 = E1 = 103. We
observe that the swelling properties are enhanced with higher concentrations of the
swelling agent [1].

The second factor is the cross-link density. For high Young modulus, the polymer
behaves like a solid and its swelling is minimal. As the Young modulus decreases, that
is, as the cross-link density decreases, the forces between the polymeric chains decrease
and a larger swell can be observed. In Figure 9 the behavior of r(t) with Young
modulus is plotted. As the Young modulus increases, a decrease in the polymeric
swelling is observed. In Figure 10 we plot the absorbed solvent mass for different
Young moduli. An increase in the cross-link density induces a decrease in the solvent
absorbed mass. In fact, a higher Young modulus induces a decrease in the relaxation
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Fig. 9. Behavior of swelling front for different Young moduli.

of the polymeric chains and consequently a decrease in the amount of solvent that
can be accommodated in the relaxed polymeric matrix.

The behavior of the mass M\ell of released drug for different Young moduli is illus-
trated in Figure 11. We observe that an increase in the Young modulus is accomplished
by an increase in the released mass. This behavior is due to the maintenance of an
organized internal polymeric structure that allows the entrance of a lower quantity
of solvent but enough to have drug dissolution and drug diffusion. The behavior of
the mass Mr of released drug on the solubility limit is illustrated in Figure 12. An
increase in the solubility limit induces an increase in the drug released mass.
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In Figure 13 we plot the drug released mass for different exterior solvent concen-
trations. An increase in c\ell e induces a decrease in the drug released mass.

6. Conclusions. A model of drug delivery into a closed release medium, from
a swellable platform, is presented in this paper. The model is represented by two
coupled systems of PDEs, defined in two adjacent moving boundary domains. Two
major types of outputs are achieved: theoretical results concerning the behavior of
the PDEs systems that describe the phenomena involved; and practical results related
to predictions of the in vitro behavior of swelling devices.

Concerning the theoretical outputs, we mention
(i) the establishment of the moving front rate (section 3);
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(ii) the energy estimates in the case of instantaneous swelling (section 4).
From these estimates the stability of the continuous model and the uniqueness of
the solution are concluded. Regarding the practical outputs, the model provides a
tool for designing swellable delivery platforms. If new chemical compounds are the
most important factor in drug development, it is also true that delivery technologies
are nowadays considered crucial in the release process. The development of swellable
polymeric systems is a major challenge as safe and efficient products need to be
implemented. Our model includes two of the major factors that govern a swelling
process of a polymeric spherical platform within a release medium:

(i) The concentration of the release medium. The dependence of the swelling
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on the solvent concentration of the system is illustrated in Figure 8. As this
concentration decreases, less swelling is observed.

(ii) The cross-link density of the polymer, which is directly related to the Young
modulus. In Figure 9 we exhibit the behavior of the swelling radius as a
function of the Young modulus E(t) defined in (11). The result is physically
sound and is in agreement with experimental work [19].

The cross-link density, the solvent contents of the system, and the solubility of the
drug define the swelling behavior that in turn determines the evolution of the mass
of drug released, Mr(t).

(i) In Figure 11 we exhibit the dependence of Mr(t) on the Young modulus.
(ii) In Figure 12 the dependence of Mr(t) on the drug solubility is illustrated.
(iii) In Figure 13 the influence of the swelling fluid concentration on the mass

Mr(t) is illustrated.
The knowledge of the qualitative and quantitative dependence of the drug release
behavior on these factors can be of great help in assisting manufacturers. The model
can provide them with different tailoring means, such as, for example, the change of
cross-link density, or the regulation of the amount of swelling medium.

Finally we note that one of the advantages of our model is that the rheological
parameters can be experimentally measured.

7. Appendix: Proof of Proposition 2. We have

(52)
d

dt
\| c\ell (t)\| 2L2(\Omega ) = 2

\Bigl( \partial c\ell 
\partial t

(t), c\ell (t)
\Bigr) 
L2(\Omega )

.

From (13) for (\partial c\ell \partial t (t), c\ell (t))L2(\Omega ) we obtain

(53)

\Bigl( \partial c\ell 
\partial t

(t), c\ell (t)
\Bigr) 
L2(\Omega )

= ( - J\ell (t).\eta , c\ell (t))L2(\partial \Omega ) + (J\ell (t),\nabla c\ell (t))L2(\Omega )\times L2(\Omega )

\leq \alpha \| c\ell (t) - c\ell e\| L2(\partial \Omega )\| c\ell (t)\| L2(\partial \Omega )

+ (J\ell (t),\nabla c\ell (t))L2(\Omega )\times L2(\Omega ).

Using the trace inequality, we get

(54)

\alpha \| c\ell (t) - c\ell e\| L2(\partial \Omega )\| c\ell (t)\| L2(\partial \Omega ) \leq \alpha 
\Bigl( 
\| c\ell (t)\| L2(\partial \Omega ) + c\ell e| \partial \Omega | 

\Bigr) 
\| c\ell (t)\| L2(\partial \Omega )

\leq (\alpha + \epsilon 21)C
2
tr\| c\ell (t)\| 21 +

1

4\epsilon 21
(\alpha c\ell e| \partial \Omega | )2,

where \epsilon 1 is an arbitrary nonzero constant and | \partial \Omega | denotes the length of the surface
\partial \Omega .

The term (J\ell (t),\nabla c\ell (t))L2(\Omega )\times L2(\Omega ) can be split into

(J\ell (t),\nabla c\ell (t))L2(\Omega )\times L2(\Omega ) = (( - Dd + \^EDvg
\prime (c\ell (t)))\nabla c\ell (t),\nabla c\ell (t))L2(\Omega )\times L2(\Omega )

 - 
\Bigl( 
Dv

\int t

0

ker(t - s)g\prime (c\ell (s))\nabla c\ell (s) ds,\nabla c\ell (t)
\Bigr) 
L2(\Omega )\times L2(\Omega )

= T1 + T2.

(55)

We establish in what follows an estimate for T2. Let \epsilon 2 be a nonzero constant. It can
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be shown that

| T2| \leq 
D2

v

4\epsilon 22
\| g\prime (c\ell )\| 2L\infty (L2)

\Bigl( \int t

0

ker(t - s)\| \nabla c\ell (s)\| L2(\Omega )\times L2(\Omega )ds
\Bigr) 2

+ \epsilon 22\| \nabla c\ell (t)\| 2L2(\Omega )\times L2(\Omega )

and, as\Bigl( \int t

0

ker(t - s)\| \nabla c\ell (s)\| L2(\Omega )\times L2(\Omega )ds
\Bigr) 2

\leq E2
1

2\tau 1

\int t

0

\| \nabla c\ell (s)\| 2L2(\Omega )\times L2(\Omega )ds,

we obtain

(56)

| T2| \leq 
D2

v

8\epsilon 22

E2
1

\tau 1
\| g\prime (c\ell )\| 2L\infty (L2)

\int t

0

\| \nabla c\ell (s)\| 2L2(\Omega )\times L2(\Omega )ds

+ \epsilon 22\| \nabla c\ell (t)\| 2L2(\Omega )\times L2(\Omega ).

Combining (52)--(56), we get

(57)

d

dt

\Bigl( 
\| c\ell (t)\| 2L2(\Omega ) + 2\gamma 1(c\ell )

\int t

0

\| \nabla c\ell (s)\| 2L2(\Omega )\times L2(\Omega )ds
\Bigr) 

\leq 1

2\epsilon 21
(\alpha c\ell e| \partial \Omega | )2 + 2(\alpha + \epsilon 21)C

2
tr\| c\ell (t)\| 2L2(\Omega )

+
D2

vE
2
1

4\tau 1\epsilon 22
\| g\prime (c\ell )\| 2L\infty (L2)

\int t

0

\| \nabla c\ell (s)\| 2L2(\Omega )\times L2(\Omega )ds.

Let \epsilon i, i = 1, 2, such that \gamma 1(c\ell ) as defined by (38) is positive. Inequality (57) leads to

\| c\ell (t)\| 2L2(\Omega ) + 2\gamma 1(c\ell )

\int t

0

\| \nabla c\ell (s)\| 2L2(\Omega )\times L2(\Omega )ds

\leq 1

2\epsilon 21
(\alpha c\ell e| \partial \Omega | )2t+ 2(\alpha + \epsilon 21)C

2
tr

\int t

0

\| c\ell (s)\| 2L2(\Omega )ds

+
D2

vE
2
1

4\tau 1\epsilon 22
\| g\prime (c\ell )\| L\infty (L2)

\int t

0

\int s

0

\| \nabla c\ell (u)\| 2L2(\Omega )\times L2(\Omega )duds,

that is,

(58)

\| c\ell (t)\| 2L2(\Omega ) +

\int t

0

\| \nabla c\ell (s)\| 2L2(\Omega )\times L2(\Omega )ds

\leq 
max\{ 2(\alpha + \epsilon 21)C

2
tr,

D2
vE

2
1

4\tau 1\epsilon 22
\| g\prime (c\ell )\| L\infty (L2)\} 

min\{ 1, 2\gamma 1(c\ell )\} \Bigl( \int t

0

\| c\ell (s)\| 2L2(\Omega )ds+

\int t

0

\int s

0

\| \nabla c\ell (u)\| 2L2(\Omega )\times L2(\Omega )duds
\Bigr) 

+
1

2\epsilon 21 min\{ 1, 2\gamma 1(c\ell )\} 
(\alpha c\ell e| \partial \Omega | )2t.

Finally, applying Gronwall's lemma, we conclude the existence of positive constants
Ci > 0, i = 1, 2, such that

(59) \| c\ell (t)\| 2L2(\Omega ) +

\int t

0

\| \nabla c\ell (s)\| 2L2(\Omega )\times L2(\Omega )ds \leq C1e
C2t(\alpha c\ell e| \partial \Omega | )2t, t \in [0, T ].
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We obtain now an estimate for En(t) =
\sum 

i=d,ud \| ci(t)\| 2L2(\Omega ) + \| cde(t)\| 2L2(\Omega c,e)
.

We have successively

1

2

d

dt

\Bigl( \sum 
i=d,ud

\| ci(t)\| 2L2(\Omega ) + \| cde(t)\| 2L2(\Omega c,e)

\Bigr) 
=

\sum 
i=d,ud

\Bigl( \partial ci
\partial t

(t), ci(t)
\Bigr) 
L2(\Omega )

+
\Bigl( \partial cde
\partial t

(t), cde(t)
\Bigr) 
L2(\Omega c,e)

=  - (\nabla .Jd(t), cd(t))L2(\Omega ) + (F (t), cd(t) - cud(t))L2(\Omega )  - (\nabla .Jd,e(t), cde(t))L2(\Omega c,e)

=  - (Jd(t).\eta \Omega , cd(t))L2(\partial \Omega ) + (Jd(t),\nabla cd(t))L2(\Omega )\times L2(\Omega ) + (F (t), cd(t) - cud(t))L2(\Omega )

 - (Jd,e(t).\eta \Omega c,e
, cde(t))L2(\partial (\Omega c,e)) + (Jd,e(t),\nabla cde(t))L2(\Omega c,e)\times L2(\Omega c,e),

where F (t) = f(cud(t), cd(t), c\ell (t)), and \eta \Omega and \eta \Omega c,e
denote the exterior unitary

normal to \Omega and \Omega c,e, respectively.
Taking into account the transition conditions (14) and the boundary condition

(15), we conclude (39).
The desired upper bound is obtaining estimating (F (t), cd(t) - cud(t))L2(\Omega ).
1. If f is defined by (7), then

(60) (F (t), cd(t) - cud(t))L2(\Omega ) \leq 0.

Equation (39) enable us to establish that
(61) \sum 

i=d,ud

\| ci(t)\| 2L2(\Omega ) + \| cde(t)\| 2L2(\Omega c,e)
+ 2Dd

\int t

0

\| \nabla cd(s)\| 2L2(\Omega )\times L2(\Omega )ds

+ 2Dd,e

\int t

0

\| \nabla cde(s)\| 2L2(\Omega c,e)\times L2(\Omega c,e)
ds \leq \| cud(0)\| 2L2(\Omega ), t \in [0, T ].

Finally, from (59), (61), (60), we conclude (40).
2. If f is defined by (8), then we have

(62)

(F (t), cd(t) - cud(t))L2(\Omega )

\leq kd\| c\ell (t)\| L2(\Omega )

\Bigl( 
1 +

\Bigl( 
1 +

1

c2sol

\Bigr) \bigl( 
\| cd(t)\| 2L2(\Omega ) + \| cud(t)\| 2L2(\Omega )

\bigr) \Bigr) 
,

and consequently, from (39), we deduce\sum 
i=d,ud

\| ci(t)\| 2L2(\Omega ) + \| cde(t)\| 2L2(\Omega c,e)
+ 2Dd

\int t

0

\| \nabla cd(s)\| 2L2(\Omega )\times L2(\Omega )ds

+ 2Dd,e

\int t

0

\| \nabla cde(s)\| 2L2(\Omega c,e)\times L2(\Omega c,e)
ds \leq \| cud(0)\| 2L2(\Omega )

+

\int t

0

kd\| c\ell (s)\| L2(\Omega )

\Bigl( 
1 +

\Bigl( 
1 +

1

c2sol

\Bigr) \bigl( 
\| cd(s)\| 2L2(\Omega ) + \| cud(s)\| 2L2(\Omega )

\bigr) \Bigr) 
ds

for t \in [0, T ]. Gronwall's lemma leads now to\sum 
i=d,ud

\| ci(t)\| 2L2(\Omega ) + \| cde(t)\| 2L2(\Omega c,e)
+ 2Dd

\int t

0

\| \nabla cd(s)\| 2L2(\Omega )\times L2(\Omega )ds

+ 2Dd,e

\int t

0

\| \nabla cde(s)\| 2L2(\Omega c,e)\times L2(\Omega c,e)
ds(63)

\leq e
kd

\bigl( 
1+ 1

c2
sol

\bigr) \int t
0
\| c\ell (s)\| L2(\Omega )ds

\Bigl( 
\| cud(0)\| 2L2(\Omega ) +

\int t

0

kd\| c\ell (s)\| L2(\Omega )ds
\Bigr) 

23



RELEASE FROM VISCOELASTIC SWELLING PLATFORMS 1401

for t \in [0, T ]. Finally, using the upper bound (59) in (63), we conclude (41).
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