11,269 research outputs found

    Ionic behavior assessment of surface-active compounds from corn steep liquor by exchange resins

    Get PDF
    Depending on their ionic nature, biosurfactants can be classified as nonionic, anionic, cationic, or amphoteric. The ionic behavior of biosurfactants is an important characteristic that dictates their use in industrial applications. In this work, a biosurfactant extract obtained from corn steep liquor was subjected to anionic or cationic resins, in order to study the ionic behavior under different operational conditions using response surface methodology. The independent variables included in the study are the dilution of biosurfactant solution, the amount of cationic or anionic resin, and the extraction time, whereas the dependent variables studied consisted of the surface tension of biosurfactant aqueous solution, after contacting with anionic or cationic resin. The results showed that biosurfactant extracted from corn steep liquor is amphoteric, since both resins were able to entrap this biosurfactant, making it particularly suited for use in personal care preparations for sensitive skin.Peer ReviewedPostprint (author's final draft

    A Hot Downflowing Model Atmosphere For Umbral Flashes And The Physical Properties Of Their Dark Fibrils

    Get PDF
    We perform NLTE inversions in a large set of umbral flashes, including the dark fibrils visible within them, and in the quiescent umbra by using the inversion code NICOLE on a set of full Stokes high-resolution Ca II 8542 A observations of a sunspot at disk center. We find that the dark structures have Stokes profiles that are distinct from those of the quiescent and flashed regions. They are best reproduced by atmospheres that are more similar to the flashed atmosphere in terms of velocities, even if with reduced amplitudes. We also find two sets of solutions that finely fit the flashed profiles: a set that is upflowing, featuring a transition region that is deeper than in the quiescent case and preceded by a slight dip in temperature, and a second solution with a hotter atmosphere in the chromosphere but featuring downflows close to the speed of sound at such heights. Such downflows may be related, or even dependent, on the presence of coronal loops, rooted in the umbra of sunspots, as is the case in the region analyzed. Similar loops have been recently observed to have supersonic downflows in the transition region and are consistent with the earlier "sunspot plumes" which were invariably found to display strong downflows in sunspots. Finally we find, on average, a magnetic field reduction in the flashed areas, suggesting that the shock pressure is moving field lines in the upper layers.Comment: Accepted in June for publication at ApJ. Comments to [email protected] or [email protected]

    Dissecting bombs and bursts: non-LTE inversions of low-atmosphere reconnection in SST and IRIS observations

    Full text link
    Ellerman bombs and UV bursts are transient brightenings that are ubiquitously observed in the lower atmospheres of active and emerging flux regions. Here we present inversion results of SST/CRISP and CHROMIS, as well as IRIS data of such transient events. Combining information from the Mg II h & k, Si IV and Ca II 8542A and Ca II H & K lines, we aim to characterise their temperature and velocity stratification, as well as their magnetic field configuration. We find average temperature enhancements of a few thousand kelvin close to the classical temperature minimum, but localised peak temperatures of up to 10,000-15,000 K from Ca II inversions. Including Mg II generally dampens these temperature enhancements to below 8000 K, while Si IV requires temperatures in excess of 10,000 K at low heights, but may also be reproduced with secondary temperature enhancements of 35,000-60,000 K higher up. However, reproducing Si IV comes at the expense of overestimating the Mg II emission. The line-of-sight velocity maps show clear bi-directional jet signatures and strong correlation with substructure in the intensity images, with slightly larger velocities towards the observer than away. The magnetic field parameters show an enhancement of the horizontal field co-located with the brightenings at similar heights as the temperature increase. We are thus able to largely reproduce the observational properties of Ellerman bombs with UV burst signature with temperature stratifications peaking close to the classical temperature minimum. Correctly modelling the Si IV emission in agreement with all other diagnostics is, however, an outstanding issue. Accounting for resolution differences, fitting localised temperature enhancements and/or performing spatially-coupled inversions is likely necessary to obtain better agreement between all considered diagnostics.Comment: Accepted for publication in Astronomy & Astrophysics. 24 pages, 17 figure

    Chromospheric polarimetry through multi-line observations of the 850 nm spectral region

    Full text link
    Future solar missions and ground-based telescopes aim to understand the magnetism of the solar chromosphere. We performed a supporting study in Quintero Noda et al. (2016) focused on the infrared Ca II 8542 A line and we concluded that is one of the best candidates because it is sensitive to a large range of atmospheric heights, from the photosphere to the middle chromosphere. However, we believe that it is worth to try improving the results produced by this line observing additional spectral lines. In that regard, we examined the neighbour solar spectrum looking for spectral lines that could increase the sensitivity to the atmospheric parameters. Interestingly, we discovered several photospheric lines that greatly improve the photospheric sensitivity to the magnetic field vector. Moreover, they are located close to a second chromospheric line that also belongs to the Ca II infrared triplet, i.e. the Ca II 8498 A line, and enhances the sensitivity to the atmospheric parameters at chromospheric layers. We conclude that the lines in the vicinity of the Ca II 8542 A line not only increase its sensitivity to the atmospheric parameters at all layers, but also they constitute an excellent spectral window for chromospheric polarimetry.Comment: 11 pages, 8 figures, 1 tabl

    Analytical results for a Bessel function times Legendre polynomials class integrals

    Full text link
    When treating problems of vector diffraction in electromagnetic theory, the evaluation of the integral involving Bessel and associated Legendre functions is necessary. Here we present the analytical result for this integral that will make unnecessary numerical quadrature techniques or localized approximations. The solution is presented using the properties of the Bessel and associated Legendre functions.Comment: 4 page
    corecore